Nonlinear equations with linear part at resonance: Variational approach
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 4, pp. 723-734 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H15, 47J05
@article{CMUC_1977_18_4_a8,
     author = {Fu\v{c}{\'\i}k, Svatopluk},
     title = {Nonlinear equations with linear part at resonance: {Variational} approach},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {723--734},
     year = {1977},
     volume = {18},
     number = {4},
     mrnumber = {0500339},
     zbl = {0376.47030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a8/}
}
TY  - JOUR
AU  - Fučík, Svatopluk
TI  - Nonlinear equations with linear part at resonance: Variational approach
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 723
EP  - 734
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a8/
LA  - en
ID  - CMUC_1977_18_4_a8
ER  - 
%0 Journal Article
%A Fučík, Svatopluk
%T Nonlinear equations with linear part at resonance: Variational approach
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 723-734
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a8/
%G en
%F CMUC_1977_18_4_a8
Fučík, Svatopluk. Nonlinear equations with linear part at resonance: Variational approach. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 4, pp. 723-734. http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a8/

[1] S. AHMAD A. C. LAZER J. L. PAUL: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance. Indiana Univ. Math. Journal 25 (1976), 933-944. | MR

[2] M. S. BERGER M. SCHECHTER: On the solvability of semilinear operator equations and elliptic boundary value problems. Bull. Amer. Math. Soc. 78 (1972), 741-745. | MR

[3] S. FUČÍK: Nonlinear potential equations with linear parts at resonance. (to appear). | MR

[4] S. FUČÍK J. NEČAS V. SOUČEK: Variationsrechnung. Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. | MR

[5] A. C. LAZER E. M. LANDESMAN D. R. MEYERS: On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence. J. Math. Anal. Appl. 52 (1975), 594-614. | MR

[6] A. C. LAZER: Some resonance problems for elliptic boundary value problems. Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. | MR

[7] M. M. VAJNBERG: Variational methods for the study of nonlinear operators. (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. | MR