$L_f(a,r)$-spaces between which all the operators are compact. I
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 4, pp. 659-674 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A45, 47B05, 47B06
@article{CMUC_1977_18_4_a3,
     author = {De Grande-De Kimpe, Nicole},
     title = {$L_f(a,r)$-spaces between which all the operators are compact. {I}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {659--674},
     year = {1977},
     volume = {18},
     number = {4},
     mrnumber = {0625492},
     zbl = {0376.46005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a3/}
}
TY  - JOUR
AU  - De Grande-De Kimpe, Nicole
TI  - $L_f(a,r)$-spaces between which all the operators are compact. I
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 659
EP  - 674
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a3/
LA  - en
ID  - CMUC_1977_18_4_a3
ER  - 
%0 Journal Article
%A De Grande-De Kimpe, Nicole
%T $L_f(a,r)$-spaces between which all the operators are compact. I
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 659-674
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a3/
%G en
%F CMUC_1977_18_4_a3
De Grande-De Kimpe, Nicole. $L_f(a,r)$-spaces between which all the operators are compact. I. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 4, pp. 659-674. http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a3/

[1] CRONE L., ROBINSON V.: Diagonal maps and diameters in Köthe spaces. To appear in Israel J. Math. | MR | Zbl

[2] DRAGILEV M. M.: On regular bases in nuclear spaces. A.M.S. Translations (2) 93 (1970), 61-82. | Zbl

[3] KÖTHE G. : Topologische Lineare Räume. Springer Verlag, Berlin 196 .

[4] PLETSCH A.: Nukleare Lokalkonvexe Räume. Akademie Verlag, Berlin 1965. | MR

[5] ROBINSON W., DE GRANDE-DE KIMPE N.: Compact maps and embeddings from an infinite type power series space to a finite type power series space. To appear in J. für die Reine und Angew. Math. | Zbl

[6] ZAHARJUTA V. P.: On the isomorphism of Cartesian products of locally convex spaces. Studia Math. 46 (1973), 201-221. | MR