When finely continuous functions are of the first class of Baire
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 4, pp. 647-657 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A15, 26A21, 26A24, 31D05, 35D05, 54C50, 54D15
@article{CMUC_1977_18_4_a2,
     author = {Luke\v{s}, Jaroslav and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {When finely continuous functions are of the first class of {Baire}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {647--657},
     year = {1977},
     volume = {18},
     number = {4},
     mrnumber = {0457646},
     zbl = {0375.26004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a2/}
}
TY  - JOUR
AU  - Lukeš, Jaroslav
AU  - Zajíček, Luděk
TI  - When finely continuous functions are of the first class of Baire
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 647
EP  - 657
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a2/
LA  - en
ID  - CMUC_1977_18_4_a2
ER  - 
%0 Journal Article
%A Lukeš, Jaroslav
%A Zajíček, Luděk
%T When finely continuous functions are of the first class of Baire
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 647-657
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a2/
%G en
%F CMUC_1977_18_4_a2
Lukeš, Jaroslav; Zajíček, Luděk. When finely continuous functions are of the first class of Baire. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 4, pp. 647-657. http://geodesic.mathdoc.fr/item/CMUC_1977_18_4_a2/

[1] H. BLUMBERG: A theorem on arbitrary functions of two variables with applications. Fund. Math. 16 (1930), 17-24.

[2] C. CONSTANTINESCU A. CORNEA: Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972. | MR

[3] A. DENJOY: Sur les fonctions dérivées sommables. Bull. Soc. Math. France 43 (1916), 161-248. | MR

[4] B. FUGLEDE: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier 21 (1971), 123-169. | MR | Zbl

[5] B. FUGLEDE: Connexion en topologie fine et balayage des mesures. Ann. Inst. Fourier 21 (1971), 227-244. | MR | Zbl

[6] B. FUGLEDE: Remarks on fine continuity and the base operation in potential theory. Math. Ann. 210 (1974), 207-212. | MR | Zbl

[7] C. GOFFMAN C. J. NEUGEBAUER: On approximate derivatives. Proc. Amer. Math. Soc. 11 (1960),962-966. | MR

[8] C. GOFFMAN C. NEUGEBAUER T. NISHIURA: Density topology and approximate continuity. Duke Math. J. 28 (1961), 497-505. | MR

[9] C. GOFFMAN D. WATERMAN: Approximately continuous transformations. Proc. Amer. Math. Soc. 12 (1961), 116-121. | MR

[10] O. HAUPT, Ch. PAUC: La topologie de Denjoy envisagée comme vraie topologie. C.R. Acad. Sci Paris 234 (1952), 390-392. | MR

[11] V. JARNÍK: Sur les fonctions de la première classe de Baire. Bull. Internat. Acad. Sci. Boheme (1926).

[12] N. F. G. MARTIN: A topology for certain measure spaces. Trans. Amer. Math. Soc. 112 (1964), 1-18. | MR | Zbl

[13] L. MIŠÍK: Notes on an approximate derivative. Mat. časopis Sloven. Akad. Vied 22 (1972), 108-114. | MR

[14] I. NETUKA L. ZAJÍČEK: Functions continuous in the fiine topology for the heat equation. Časopis Pěst. Mat. 99 (1974), 300-306. | MR

[15] D. PREISS: Approximate derivative and Baire classes. Czechoslovak Math. J. 21 (1971), 373-382. | MR

[16] J. RIDDER: Über approximativ stetigen Funktionen. Fund. Math. 13 (1929), 201-209.

[17] S. SAKS: Theory of the integral. New York, 1937. | Zbl

[18] L. E. SNYDER: The Baire classification of ordinary and approximate partial derivatives. Proc. Amer. Math. Soc. 17 (1966), 115-123. | MR | Zbl

[19] L. E. SNYDER: Approximate Stolz angle limits. Proc. Amer. Math. Soc. 17 (1966), 416-422. | MR | Zbl

[20] G. TOLSTOV: Sur la dérivée approximative exacte. Mat. Sb. 4 (1938), 499-504. | Zbl

[21] R. S. TROYER W. P. ZIEMER: Topologies generated by outer measures. J. Math. Mech. 12 (1963), 485-494. | MR