Amalgamating commutative regular rings
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 3, pp. 423-436 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08A15, 08A25, 08Axx, 16A30, 16A56, 16E50, 16N60, 16Nxx
@article{CMUC_1977_18_3_a1,
     author = {Cornish, William H.},
     title = {Amalgamating commutative regular rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {423--436},
     year = {1977},
     volume = {18},
     number = {3},
     mrnumber = {0460216},
     zbl = {0378.16011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a1/}
}
TY  - JOUR
AU  - Cornish, William H.
TI  - Amalgamating commutative regular rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 423
EP  - 436
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a1/
LA  - en
ID  - CMUC_1977_18_3_a1
ER  - 
%0 Journal Article
%A Cornish, William H.
%T Amalgamating commutative regular rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 423-436
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a1/
%G en
%F CMUC_1977_18_3_a1
Cornish, William H. Amalgamating commutative regular rings. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 3, pp. 423-436. http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a1/

[1] P. D. BACSICH: Injectivity in Model Theory. Colloq. Math. 25 (1972), 165-176. | MR | Zbl

[2] P. D. BACSICH: An epi-reflector for universal theories. Canad. Math. Bull. 16 (1973), 167-171. | MR | Zbl

[3] W. H. CORNISH: The variety of commutative Rickart rings. Nanta Math. 5 (1972), 43-51. | MR | Zbl

[4] W. H. CORNISH: On H. Priestley's dual of the category of bounded distributive lattices. Mat. Vesnik 12 (26) (1975), 325-332. | Zbl

[5] W. H. CORNISH: The variety of commutative Rickart rings has no non-trivial infectives. Nanta Math. (to appear). | MR

[6] A. DAY: A note on the Congruence Extension Property. Alg. Universalis 1 (1971), 234-235. | MR | Zbl

[7] B. J. GARDNER: Epimorphisms of regular rings. Comment. Math. Univ. Carolinae 16 (1975), 151-160. | MR | Zbl

[8] N. J. FINE L. GILLMAN J. LAMBEK: Rings of quotients of rings of functions. McGill Univ. Press, Montreal, 1965. | MR

[9] G. GRÄTZER: Universal Algebra. Van Nostrand, Princeton, 1968. | MR

[10] G. GRÄTZER: Lattice Theory. First concepts and distributive lattices. W. H. Freeman, San Francisco, 1971. | MR

[11] G. GRÄTZER H. LAKSER: The structure of pseudocomplemented distributive lattices II: Congruence extension and amalgamation. Trans. Amer. Math. Soc. 156 (1971), 343-358. | MR

[12] H. HERRLICH G. E. STRECKER: Category theory. Allyn and Bacon, Boston, 1973. | MR

[13] M. HOCHSTER: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142(1969), 43-60. | MR | Zbl

[14] B. JÓNSSON: Extensions of relational structures. Proc. Internat. Sympos. Theory of Models (Berkeley 1963), North-Holland, Amsterdam, 1965, pp.146-157. | MR

[15] J.-P. OLIVIER: Anneaux absolument plats universels et épimorphismes à buts réduit. Séminaire P. SAMUEL (Algèbre commutative) 1967/68 No. 6, Secrétariat math., Paris, 1968.

[16] R. RAPHAEL: Some remarks on regular and strongly regular rings. Canad. Math. Bull. 17 (1974/75), 709-712. | MR

[17] H. H. STORRER: Epimorphismen von kommutativen Ringen. Comment. Math. Helv. 43 (1968), 378-401. | MR | Zbl

[18] W. TAYLOR: Residually small varieties. Alg. Universalis 2 (1972), 33-53. | MR | Zbl

[19] R. WIEGAND: Modules over universal regular rings. Pacific J. Math. 39 (1971), 807-819. | MR | Zbl

[20] O. ZARISKI P. SAMUEL: Commutative Algebras. Vol. 1. Van Nostrand, Princeton, 1958. | MR