@article{CMUC_1977_18_3_a0,
author = {Sato, Ryotaro},
title = {An {Abelian} ergodic theorem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {415--422},
year = {1977},
volume = {18},
number = {3},
mrnumber = {0492183},
zbl = {0358.47006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a0/}
}
Sato, Ryotaro. An Abelian ergodic theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 3, pp. 415-422. http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a0/
[1] R. V. CHACON: An ergodic theorem for operators satisfying norm conditions. J. Math. Mech. 11 (1962), 165-172. | MR | Zbl
[2] R. V. CHACON U. KRENGEL: Linear modulus of a linear operator. Proc. Amer. Math. Soc. 15 (1964), 553-559. | MR
[3] Y. DERRIENNIC M. LIN: On invariant measures and ergodic theorems for positive operators. J. Functional Analysis 13 (1973), 252-267. | MR
[4] N. DUNFORD J. T. SCHWARTZ: Linear operators. I. General theory. Interscience, New York, 1958. | MR
[5] S. R. FOGUEL: The ergodic theory of Markov processes. Van Nostrand Reinhold, New York, 1969. | MR | Zbl
[6] R. SATO: Ergodic properties of bounded $L_1$-operators. Proc. Amer. Math. Soc. 39 (1973), 540-546. | MR | Zbl
[7] R. SATO: An individual ergodic theorem. Proc. Amer. Math. Soc. (to appear). | MR | Zbl