An Abelian ergodic theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 3, pp. 415-422 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A65, 28D05, 47A35
@article{CMUC_1977_18_3_a0,
     author = {Sato, Ryotaro},
     title = {An {Abelian} ergodic theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {415--422},
     year = {1977},
     volume = {18},
     number = {3},
     mrnumber = {0492183},
     zbl = {0358.47006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a0/}
}
TY  - JOUR
AU  - Sato, Ryotaro
TI  - An Abelian ergodic theorem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 415
EP  - 422
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a0/
LA  - en
ID  - CMUC_1977_18_3_a0
ER  - 
%0 Journal Article
%A Sato, Ryotaro
%T An Abelian ergodic theorem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 415-422
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a0/
%G en
%F CMUC_1977_18_3_a0
Sato, Ryotaro. An Abelian ergodic theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 3, pp. 415-422. http://geodesic.mathdoc.fr/item/CMUC_1977_18_3_a0/

[1] R. V. CHACON: An ergodic theorem for operators satisfying norm conditions. J. Math. Mech. 11 (1962), 165-172. | MR | Zbl

[2] R. V. CHACON U. KRENGEL: Linear modulus of a linear operator. Proc. Amer. Math. Soc. 15 (1964), 553-559. | MR

[3] Y. DERRIENNIC M. LIN: On invariant measures and ergodic theorems for positive operators. J. Functional Analysis 13 (1973), 252-267. | MR

[4] N. DUNFORD J. T. SCHWARTZ: Linear operators. I. General theory. Interscience, New York, 1958. | MR

[5] S. R. FOGUEL: The ergodic theory of Markov processes. Van Nostrand Reinhold, New York, 1969. | MR | Zbl

[6] R. SATO: Ergodic properties of bounded $L_1$-operators. Proc. Amer. Math. Soc. 39 (1973), 540-546. | MR | Zbl

[7] R. SATO: An individual ergodic theorem. Proc. Amer. Math. Soc. (to appear). | MR | Zbl