A note on metrically inward mappings
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 2, pp. 259-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54H25
@article{CMUC_1977_18_2_a4,
     author = {Lee, Cheng Ming and Tan, Kok Keong},
     title = {A note on metrically inward mappings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {259--263},
     year = {1977},
     volume = {18},
     number = {2},
     mrnumber = {0500888},
     zbl = {0357.54031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a4/}
}
TY  - JOUR
AU  - Lee, Cheng Ming
AU  - Tan, Kok Keong
TI  - A note on metrically inward mappings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 259
EP  - 263
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a4/
LA  - en
ID  - CMUC_1977_18_2_a4
ER  - 
%0 Journal Article
%A Lee, Cheng Ming
%A Tan, Kok Keong
%T A note on metrically inward mappings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 259-263
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a4/
%G en
%F CMUC_1977_18_2_a4
Lee, Cheng Ming; Tan, Kok Keong. A note on metrically inward mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 2, pp. 259-263. http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a4/

[1] A. BRØNDSTED: On a lemma of Bishop and Phelps. Pacific J. Math. 55 (1974), 335-341. | MR

[2] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR | Zbl

[3] M. EDELSTEIN: On fixed and periodic points under contractive mappings. J. London Math. Soc. 37 (1962), 74-79. | MR | Zbl

[4] B. R. HALPERN: Fixed point theorems for outward maps. Doctoral Thesis, University of California, Los Angeles, California, 1965.

[5] W. V. PETRYSHYN P. M. FITZPATRICK: Fixed point theorems for multi-valued non-compact inward mappings. J. Math. Anal. Appl. 46 (1974), 756-767. | MR