On a class of tangential Cauchy-Riemann maps
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 2, pp. 401-408 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 32A10, 32C05, 53C15, 53C55
@article{CMUC_1977_18_2_a17,
     author = {\v{S}vec, Alois},
     title = {On a class of tangential {Cauchy-Riemann} maps},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {401--408},
     year = {1977},
     volume = {18},
     number = {2},
     mrnumber = {0457769},
     zbl = {0355.53034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a17/}
}
TY  - JOUR
AU  - Švec, Alois
TI  - On a class of tangential Cauchy-Riemann maps
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 401
EP  - 408
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a17/
LA  - en
ID  - CMUC_1977_18_2_a17
ER  - 
%0 Journal Article
%A Švec, Alois
%T On a class of tangential Cauchy-Riemann maps
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 401-408
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a17/
%G en
%F CMUC_1977_18_2_a17
Švec, Alois. On a class of tangential Cauchy-Riemann maps. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 2, pp. 401-408. http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a17/

[1] S. S. CHERN S. I. GOLDBERG: On the volume-decreasing property of a class of real harmonic mappings. Amer. J. Math. 97 (1975), 133-147. | MR

[2] G. B. FOLLAND J. J. KOHN: The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, 75. Princeton Univ. Press, 1972. | MR

[3] A. ŠVEC: Harmonic mappings of surfaces. Čas. pěst. mat. 101 (1976), 283-292. | MR