Mean value theorem for convex functionals
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 2, pp. 213-218
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1977_18_2_a0,
author = {Gwinner, Joachim},
title = {Mean value theorem for convex functionals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {213--218},
year = {1977},
volume = {18},
number = {2},
mrnumber = {0442167},
zbl = {0352.26007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a0/}
}
Gwinner, Joachim. Mean value theorem for convex functionals. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 2, pp. 213-218. http://geodesic.mathdoc.fr/item/CMUC_1977_18_2_a0/
[1] I. EKELAND R. TEMAM: Analyse convexe et problemes variationals. Paris 1974.
[2] R. B. HOLMES: Geometric functional analysis and its applications. New York 1975. | MR | Zbl
[3] J. KOLOMÝ: Uniform boundedness and strong continuity of derivatives convex functionals. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 41-45. | MR
[4] J. KOLOMÝ: Some properties of monotone (potential) operators. Beiträge Anal. 8 (1976), 77-84. | MR | Zbl
[5] W. ORLICZ Z. CIESIELSKI: Some remarks on the convergence of functionals on bases. Studia Math. 16 (1958), 335-352. | MR
[6] R. T. ROCKAFELLAR: Convex analysis. Princeton 1970. | MR | Zbl
[7] L. L. WEGGE: Mean value theorem for convex functions. J. Math. Econom. 1 (1974), 207-208. | Zbl