Graphs with given subgraphs represent all categories
Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 1, pp. 115-127 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C25, 05C99, 18B15
@article{CMUC_1977_18_1_a12,
     author = {Koubek, V\'aclav},
     title = {Graphs with given subgraphs represent all categories},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {115--127},
     year = {1977},
     volume = {18},
     number = {1},
     mrnumber = {0457276},
     zbl = {0355.18006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1977_18_1_a12/}
}
TY  - JOUR
AU  - Koubek, Václav
TI  - Graphs with given subgraphs represent all categories
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1977
SP  - 115
EP  - 127
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1977_18_1_a12/
LA  - en
ID  - CMUC_1977_18_1_a12
ER  - 
%0 Journal Article
%A Koubek, Václav
%T Graphs with given subgraphs represent all categories
%J Commentationes Mathematicae Universitatis Carolinae
%D 1977
%P 115-127
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1977_18_1_a12/
%G en
%F CMUC_1977_18_1_a12
Koubek, Václav. Graphs with given subgraphs represent all categories. Commentationes Mathematicae Universitatis Carolinae, Tome 18 (1977) no. 1, pp. 115-127. http://geodesic.mathdoc.fr/item/CMUC_1977_18_1_a12/

[1] R. FRUCHT: Herstellung von Graphen mit vorgegebener abstrakten Gruppe. Compositio Math. 6 (1938), 239-250. | MR

[2] Z. HEDRLÍN J. LAMBEK: How comprehensive is the category of semigroups?. J. of Algebra 11 (1969), 195-212. | MR

[3] Z. HEDRLÍN E. MENDELSOHN: The category of graphs with a given subgraph - with applications to topology and algebra. Canad. J. Math. 21 (1969), 1506-1517. | MR

[4] Z. HEDRLÍN A. PULTR: Relations (graphs) with given finitely generated semigroups. Mhf. für Math. 68 (1964), 213-217. | MR

[5] Z. HEDRLÍN A. PULTR: Symmetric relations (undirected graphs) with given semigroup. Mhf. für Math. 68 (1964), 318-322. | MR

[6] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406. | MR

[7] Z. HEDRLÍN: Extensions of structures and full embeddings of categories. in: Proc. Intern. Congr. of Mathematicians, Nice, September 1970 (Gauthier-Villars, Paris, 1971). | MR

[8] P. HELL: Full embeddings into some categories of graphs. Alg. Univ. 2 (1972), 129-141. | MR | Zbl

[9] P. HELL J. NEŠETŘIL: Graphs and $k$-societies. Canad. Math. Bull. 13 (1970), 375-381. | MR

[10] E. MENDELSOHN: On a technique for representing semigroups and endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283-294. | MR

[11] A. PULTR: On full embeddings of concrete categories with respect to forgetful functor. Comment. Math. Univ. Carolinae 9 (1968), 281-305. | MR

[12] A. PULTR: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Annalen 178 (1968), 78-82. | MR | Zbl