Probabilistic reconstruction from subgraphs
Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 709-719 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C05, 05C99
@article{CMUC_1976_17_4_a8,
     author = {M\"uller, Vladim{\'\i}r},
     title = {Probabilistic reconstruction from subgraphs},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {709--719},
     year = {1976},
     volume = {17},
     number = {4},
     mrnumber = {0441789},
     zbl = {0349.05121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a8/}
}
TY  - JOUR
AU  - Müller, Vladimír
TI  - Probabilistic reconstruction from subgraphs
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1976
SP  - 709
EP  - 719
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a8/
LA  - en
ID  - CMUC_1976_17_4_a8
ER  - 
%0 Journal Article
%A Müller, Vladimír
%T Probabilistic reconstruction from subgraphs
%J Commentationes Mathematicae Universitatis Carolinae
%D 1976
%P 709-719
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a8/
%G en
%F CMUC_1976_17_4_a8
Müller, Vladimír. Probabilistic reconstruction from subgraphs. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 709-719. http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a8/

[1] F. HARARY: Graph theory. Addison Wesley, Reading, (1969). | MR | Zbl

[2] V. MULLER: The edge reconstruction hypothesis is true for graphs with more than $n log n$ edges. (to appear in Journal of Comb. Theory (B)).

[3] J. NEŠETŘIL: On approximative isomorphisms and Ulam-Kelly conjecture. Berichte der XVIII. IWK, TH Ilmenau (1973), 17-18.

[4] S. M. ULAM: A collection of mathematical problems. Wiley (Interscience, New York, 1960). | MR | Zbl