Fine topologies as examples of non-Blumberg Baire spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 683-688 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 31D05, 54C30, 54C50, 54D99, 54G20
@article{CMUC_1976_17_4_a5,
     author = {Luke\v{s}, Jaroslav and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {Fine topologies as examples of {non-Blumberg} {Baire} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {683--688},
     year = {1976},
     volume = {17},
     number = {4},
     mrnumber = {0451204},
     zbl = {0338.54018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a5/}
}
TY  - JOUR
AU  - Lukeš, Jaroslav
AU  - Zajíček, Luděk
TI  - Fine topologies as examples of non-Blumberg Baire spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1976
SP  - 683
EP  - 688
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a5/
LA  - en
ID  - CMUC_1976_17_4_a5
ER  - 
%0 Journal Article
%A Lukeš, Jaroslav
%A Zajíček, Luděk
%T Fine topologies as examples of non-Blumberg Baire spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1976
%P 683-688
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a5/
%G en
%F CMUC_1976_17_4_a5
Lukeš, Jaroslav; Zajíček, Luděk. Fine topologies as examples of non-Blumberg Baire spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 683-688. http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a5/

[1] H. R. BENNETT T. G. McLAUGHLIN: A selective survey of axiom-sensitive results in general topology. Texas Tech University Math. Series, no 12. | MR

[2] H. BLUMBERG: New properties of all real functions. Trans. Amer. Math. Soc. 24 (1922), 115-128. | MR

[3] J. C. BRADFORD C. GOFFMAN: Metric spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 11 (1960), 667-670. | MR

[4] C. CONSTANTINESCU A. CORNEA: Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972. | MR

[5] C. GOFFMAN D. WATERMAN: Approximately continuous transformations. Proc. Amer. Math. Soc. 12 (1961) 9 116-121. | MR

[6] R. LEVY: A totally ordered Baire space for which Blumberg's theorem fails. Proc. Amer. Math. Soc. 41 (1973), 304. | MR | Zbl

[7] R. LEVY: Strongly non-Blumberg spaces. General Topology and Appl. 4 (1974), 173-177. | MR | Zbl

[8] W. A. R. WEISS: A solution to the Blumberg problem. Bull. Amer. Math. Soc. 81 (1975), 957-958. | MR | Zbl

[9] Jr H. E. WHITE: Topological spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 44 (1974), 454-462. | MR | Zbl

[10] Jr H. E. WHITE: Some Baire spaces for which Blumberg's theorem does not hold. Proc. Amer. Math. Soc. 51 (1975), 477-482. | MR | Zbl