Van der Waerden theorem for sequences of integers not containing an arithmetic progression of $k$ terms
Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 675-681 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05A99, 10H20, 10L10, 11B83, 11N13
@article{CMUC_1976_17_4_a4,
     author = {Ne\v{s}et\v{r}il, Jaroslav and R\"odl, Vojt\v{e}ch},
     title = {Van der {Waerden} theorem for sequences of integers not containing an arithmetic progression of $k$ terms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {675--681},
     year = {1976},
     volume = {17},
     number = {4},
     mrnumber = {0441906},
     zbl = {0345.10030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a4/}
}
TY  - JOUR
AU  - Nešetřil, Jaroslav
AU  - Rödl, Vojtěch
TI  - Van der Waerden theorem for sequences of integers not containing an arithmetic progression of $k$ terms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1976
SP  - 675
EP  - 681
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a4/
LA  - en
ID  - CMUC_1976_17_4_a4
ER  - 
%0 Journal Article
%A Nešetřil, Jaroslav
%A Rödl, Vojtěch
%T Van der Waerden theorem for sequences of integers not containing an arithmetic progression of $k$ terms
%J Commentationes Mathematicae Universitatis Carolinae
%D 1976
%P 675-681
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a4/
%G en
%F CMUC_1976_17_4_a4
Nešetřil, Jaroslav; Rödl, Vojtěch. Van der Waerden theorem for sequences of integers not containing an arithmetic progression of $k$ terms. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 675-681. http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a4/

[0] P. ERDOS: Problems and results in combinatorial number theory. Société Mathematique de France, Astérisque 24-25 (1975), 295-310. | MR

[1] J. FOLKMAN: Graphs with monochromatic complete subgraphs in every edge colouring. SIAM J. Applied Hath. 18 (1970), 19-29. | MR

[2] R. L. GRAHAM B. L. ROTHSCHILD: A short proof of van der Waerden's theorem on arithmetic progressions. Proc. Amer. Math. Soc. 42 (1974), 385-386. | MR

[3] J. NEŠETŘIL V. RÖDL: Ramsey property of graphs with forbidden complete subgraphs. J. Comb. Th. (B), 20, 3 (1976), 243-249. | MR

[4] J. NEŠETŘIL V. RÖDL: Type theory of partition problems of graphs. in: Recent advances in graph theory, Academia, Prague (1975), 405-412. | MR

[5] J. NEŠETŘIL V. RÖDL: Partitions of finite relational and set systems. to appear in J. Comb. Th. (A). | MR

[6] B. L. van der WAERDEN: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wis. 15 (1928), 212-216.

[7] J. SPENCER: Restricted Ramsey configurations. J. Comb. Th. 19, 3 (1975), 278-286. | MR | Zbl

[8] A. HALES. R. I. JEWETT: Regularity and positional games. Trans. Amer. Math. Soc. 106 (1963), 222-229. | MR | Zbl