@article{CMUC_1976_17_4_a3,
author = {Haslinger, Jaroslav},
title = {A note on a dual finite element method},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {665--673},
year = {1976},
volume = {17},
number = {4},
mrnumber = {0431750},
zbl = {0361.65095},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a3/}
}
Haslinger, Jaroslav. A note on a dual finite element method. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 4, pp. 665-673. http://geodesic.mathdoc.fr/item/CMUC_1976_17_4_a3/
[1] B. Fraeijs de VEUBEKE: Displacement and equilibrium models in the finite element method. Stress Analysis, ed. by O. C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197.
[2] B. Fraeijs de VEUBEKE O. C. ZIENKIEWICZ: Strain energy bounds in finite-element analysis by slab analogies. J. Strain Analysis 2 (1967), 265-271.
[3] V. B., Jr. WATWOOD B. J. HARTZ: An equilibrium stress field model for finite element solution of twodimensional elastostatic problems. Int. J. Solids Structures 4 (1968), 857-873.
[4] B. Fraeijs de VEUBEKE M. HOGGE: Dual analysis for heat conduction problems by finite elements. Int. J. Numer. Meth. Eng. (1972), 65-82.
[5] J. P. AUBIN H. G. BURCHARD: Some aspects of the method of the hypercicle applied to elliptic variational problems. Numer. Sol. Part. Dif. Eqs. II, Synspade (1970), 1- 67. | MR
[6] J. VACEK: Dual variational principles for an elliptic partial differential equation. Apl. mat. 18 (1976), 5-27. | MR | Zbl
[7] G. GRENACHER: A posteriori error estimates for elliptic partial differential equations. Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972.
[8] J. M. THOMAS: Méthods des éléments finis équilibre pour les problèmes elliptiques du $2$-ème ordre. To appear.
[9] J. HASLINGER I. HLAVÁČEK: Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43-65. | MR
[10] J. HASLINGER I. HLAVÁČEK: Convergence of a dual finite element method in $R_n$. Comment. Math. Univ. Carolinae 16 (1975), 369-486. | MR
[11] P. G. CIARLET P. A. RAVIART: General Lagrange and Hermite interpolation in $R^n$ with applications to finite element method. Arch. Rat. Mech. Anal. 46 (1972), 177-199. | MR
[12] J. H. BRAMBLE M. ZLÁMAL: Triangular elements in the finite element method. Math. Comp. 24 (1970), 809-820. | MR