@article{CMUC_1976_17_3_a7,
author = {Pt\'ak, Vlastimil and Zem\'anek, Jaroslav},
title = {Continuite lipschitzienne du spectre comme fonction d'un op\'erateur normal},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {507--512},
year = {1976},
volume = {17},
number = {3},
mrnumber = {0493433},
zbl = {0341.47019},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_3_a7/}
}
TY - JOUR AU - Pták, Vlastimil AU - Zemánek, Jaroslav TI - Continuite lipschitzienne du spectre comme fonction d'un opérateur normal JO - Commentationes Mathematicae Universitatis Carolinae PY - 1976 SP - 507 EP - 512 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1976_17_3_a7/ LA - fr ID - CMUC_1976_17_3_a7 ER -
%0 Journal Article %A Pták, Vlastimil %A Zemánek, Jaroslav %T Continuite lipschitzienne du spectre comme fonction d'un opérateur normal %J Commentationes Mathematicae Universitatis Carolinae %D 1976 %P 507-512 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_1976_17_3_a7/ %G fr %F CMUC_1976_17_3_a7
Pták, Vlastimil; Zemánek, Jaroslav. Continuite lipschitzienne du spectre comme fonction d'un opérateur normal. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 3, pp. 507-512. http://geodesic.mathdoc.fr/item/CMUC_1976_17_3_a7/
[1] B. AUPETIT: Continuité et uniforme continuité du spectre dans les algèbres de Banach. à paraitre. | Zbl
[2] F. L. BAUER C. T. FIKE: Norms and exclusion theorems. Numer. Math. 2 (1960), 137-141. | MR
[3] N. BOURBAKI: Théories spectrales. Paris 1967. | Zbl
[4] J. B. CONWAY: On the Calkin algebra and the covering homotopy property. Trans. Amer. Math. Soc. 211 (1975), 135-142. | MR | Zbl
[5] M. FIEDLER: Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices. Czech. Math. J. 24 (1974), 392-402. | MR | Zbl
[6] A. J. HOFFMAN H. W. WIELANDT: The variation of the spectrum of a normal matrix. Duke Math. J. 20 (1953), 37-39. | MR
[7] V. I. ISTRĂTESCU: Introducere în teoria operatorilor liniari. Bucureşti 1975.
[8] J. JANAS: Note on the spectrum and joint spectrum of hyponormal and Toeplitz operators. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 957-961. | MR | Zbl
[9] T. KATO: Perturbation theory for linear operators. New York 1S66. | MR | Zbl
[10] J. D. NEWBURGH: The variation of spectra. Duke Math. J. 19 (1951), 165-176. | MR | Zbl
[11] V. PTÁK: An inclusion theorem for normal operators. Acta Sci. Math. Szeged, sous presse. | MR
[12] J. STOER R. BULIRSCH: Einführung in die Numerische Mathematik II. Berlin 1911.
[13] J. ZEMÁNEK: Spectral radius characterizations of commutativity in Banach algebras. Studia Math., sous presse. | MR