On the existence of weak solutions for some quasilinear elliptic variational boundary value problems at resonance
Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 2, pp. 315-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35D05, 35J60, 35J65, 47B10, 47B30, 47H15, 47J05
@article{CMUC_1976_17_2_a9,
     author = {Hetzer, Georg},
     title = {On the existence of weak solutions for some quasilinear elliptic variational boundary value problems at resonance},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--334},
     year = {1976},
     volume = {17},
     number = {2},
     mrnumber = {0412602},
     zbl = {0326.35033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a9/}
}
TY  - JOUR
AU  - Hetzer, Georg
TI  - On the existence of weak solutions for some quasilinear elliptic variational boundary value problems at resonance
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1976
SP  - 315
EP  - 334
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a9/
LA  - en
ID  - CMUC_1976_17_2_a9
ER  - 
%0 Journal Article
%A Hetzer, Georg
%T On the existence of weak solutions for some quasilinear elliptic variational boundary value problems at resonance
%J Commentationes Mathematicae Universitatis Carolinae
%D 1976
%P 315-334
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a9/
%G en
%F CMUC_1976_17_2_a9
Hetzer, Georg. On the existence of weak solutions for some quasilinear elliptic variational boundary value problems at resonance. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 2, pp. 315-334. http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a9/

[1] F. E. BROWDER: Existence theorems for nonlinear partial differential equations. Proc. Symp. Pure Math. 16, Amer. Math. Soc. (1970), edited by: Shing-Shen Chern and Stefan Smale. | MR | Zbl

[2] D. G. DE FIGUEIREDO: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 15 (1974). 415-428. | MR | Zbl

[3] D. G. DE FIGUEIREDO: The Dirichilet problem for nonlinear elliptic equations: A Hilbert space approach. Partial differential equations and related topics, Lecture Notes 446 (1975), edited by K. A. Goldstein. | MR

[4] S. FUČÍK M. KUČERA J. NEČAS: Ranges of nonlinear asymptotically linear operators. J. Diff. Eq. 17 (1975), 375-394. | MR

[5] P. HESS: On a theorem by Landesman and Lazer. Indiana Univ. Math. J. 23 (1974), 827-829. | MR | Zbl

[6] G. HETZER: Some remarks on $\phi_+$-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations. Ann. Soc. Scient. Bruxelles 89 (1975), 553-564. | MR | Zbl

[7] G. HETZER: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type. Comment. Math. Univ. Carolinae 16 (1975), 121-138. | MR | Zbl

[8] G. HETZER V. STALLBOHM: Eine Existenzaussage für asymptotisch lineare Störungen eines Fredholmoperators mit Index $0$. to appear. | MR

[9] G. HETZER V. STALLBOHM: Coincidence degree and Rabinowitz's bifurcation theorem. to appear.

[10] E. M. LANDESMAN A. C. LAZER: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623. | MR

[11] J. MAWHIN: Nonlinear perturbations of Fredholm mappings in normed spaces and applications to differential equations. Trabalho de Matematica No 61, Univ. of Brasilia (1974).

[12] J. NEČAS: Les méthodes directes en théorie des équations elliptiques. Paris (1967). | MR

[13] J. NEČAS: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14 (1973), 63-72. | MR

[14] L. NIRENBERG: An application of generalized degree to a class of nonlinear problems. Proc. Symp. Functional Anal., Liège (1971). | MR | Zbl

[15] M. SCHECHTER: A nonlinear elliptic boundary value problem. Ann. Scu. Norm. Sup. Pisa, Ser. III, 27 (1973), 707-716. | MR

[16] C. A. STUART: Some bifurcation theory for $k$-set-contractions. Proc. London Math. Soc. (3) 27 (1973), 531-550. | MR | Zbl

[17] S. A. WILLIAMS: A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem. J. Differ. Eq. 8 (1970), 580-586. | MR