@article{CMUC_1976_17_2_a10,
author = {Pr\'a\v{s}kov\'a, Zuzana},
title = {Asymptotic expansion and a local limit theorem for the signed {Wilcoxon} statistic},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {335--344},
year = {1976},
volume = {17},
number = {2},
mrnumber = {0405669},
zbl = {0336.62034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a10/}
}
TY - JOUR AU - Prášková, Zuzana TI - Asymptotic expansion and a local limit theorem for the signed Wilcoxon statistic JO - Commentationes Mathematicae Universitatis Carolinae PY - 1976 SP - 335 EP - 344 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a10/ LA - en ID - CMUC_1976_17_2_a10 ER -
Prášková, Zuzana. Asymptotic expansion and a local limit theorem for the signed Wilcoxon statistic. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 2, pp. 335-344. http://geodesic.mathdoc.fr/item/CMUC_1976_17_2_a10/
[1] ALBERS W., BICKEL P. J., van ZWET W. R.: Asymptotic expansions for the power of distribution free tests in the one-sample problem. Amsterdam 1974 (preprint).
[2] BICKEL P. J.: Edgeworth expansions in nonparametric statistics. Ann. Statist. 2 (1974), 1-20. | MR | Zbl
[3] CLAYPOOL P. L., HOLBERT D.: Accuracy of normal and Edgeworth approximations to the distribution of the Wilcoxon signed rank statistic. J. Amer. Stat. Assoc. 69 (1974), 255-258. | Zbl
[4] DANILOV V. L.: A Survey of Mathematical Analysis I. (in Czech), SNTL (Prague, 1968).
[5] ESSEEN C. G.: Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Mathematica 77 (1945), 1-125. | MR | Zbl
[6] FELLINGHAM S. A., STOKER D. J.: An approximation for the exact distribution of Wilcoxon test for symmetry. J. Amer. Stat. Assoc. 59(1964), 899-905. | MR
[7] HÁJEK J.: Nonparametric Statistics. Holden-Day (San Francisco, 1969). | MR
[8] PETROV V. V.: The Sums of Independent Random Variables. (in Russian), Nauka (Moscow, 1972). | MR
[9] PRÁŠKOVÁ, VÍZKOVÁ Z.: Asymptotic expansion and a local limit theorem for a function of the Kendall rank correlation coefficient. to appear in Ann. Statist. 4 (1976). | MR
[10] ROGERS W. F.: Exact null distributions and asymptotic expansions for rank test statistics. Technical Report (Stanford University, 1971). | MR
[11] VÍZKOVÁ Z.: Local limit theorems for some rank test statistics. (in Czech), Ph D thesis (Prague, 1974).