@article{CMUC_1976_17_1_a3,
author = {McGrath, S. A.},
title = {On the local ergodic theorems of {Krengel,} {Kubokawa,} and {Terrell}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {49--59},
year = {1976},
volume = {17},
number = {1},
mrnumber = {0417818},
zbl = {0327.28015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_1_a3/}
}
McGrath, S. A. On the local ergodic theorems of Krengel, Kubokawa, and Terrell. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/CMUC_1976_17_1_a3/
[1] M. A. AKCOGLU: A pointwise ergodic theorem in $L_p$ spaces. Canad. J. Math. (to appear). | MR | Zbl
[2] M. A. AKCOGLU R. V. CHACON: A local ratio theorem. Canad. J. Math. 22 (1970), 545-552, | MR
[3] H. BUSEMANN W. FELLER: Zur Differentiation der Lebesgueschen Integrale. Fund. Math. 22 (1934), 226-256,
[4] N. DUNFORD J. T. SCHWARTZ: Linear Operators. part I, Interscience, New York, 1958.
[5] E. HILLE R. S. PHILLIPS: Functional Analysis and Semigroups. rev. ed., Amer. Math. Soc., Providence, RI, 1957. | MR
[6] U. KRENGEL: A local ergodic theorem. Inventiones Math. 6 (1969), 329-333. | MR | Zbl
[7] Y. KUBOKAWA: A general local ergodic theorem. Proc. Japan Acad. 48 (1972), 361-465. | MR | Zbl
[8] Y. KUBOKAWA: A local ergodic theorem for semi-groups on $L_p$. Tohoku Math. J. 26 (1974), 411-422. | MR
[9] Y. KUBOKAWA: Ergodic theorems for contraction semigroups. J. Math. Soc. Japan 27 (1975), 184-193. | MR | Zbl
[10] S. A. MOGRATH: A pointwise Abelian ergodic theorem for $L_p$ semigroups, $l\leq p < \infty$. to appear.
[11] D. S. ORNSTEIN: The sums of iterates of a positive operator. Advances in Probability and Related Topics, vol. 2 (edited by F. Ney), 87-115, Dekker, New York, 1970. | MR | Zbl
[12] T. R. TERRELL: Local ergodic theorems for $n$-parameter semigroups of operators. Contributions to Ergodic Theory and Probability, 262-278, Springer-Verlag, Berlin/Heidelberg/New York, 1970., | MR | Zbl
[13] K. YOSIDA: Functional Analysis. 1st ed., Springer-Verlag, 1965. | Zbl