On collective compactness of derivatives
Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 1, pp. 7-30 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A03, 46E30, 58C20, 58C25
@article{CMUC_1976_17_1_a1,
     author = {Durdil, Ji\v{r}{\'\i}},
     title = {On collective compactness of derivatives},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {7--30},
     year = {1976},
     volume = {17},
     number = {1},
     mrnumber = {0415664},
     zbl = {0321.58008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1976_17_1_a1/}
}
TY  - JOUR
AU  - Durdil, Jiří
TI  - On collective compactness of derivatives
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1976
SP  - 7
EP  - 30
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1976_17_1_a1/
LA  - en
ID  - CMUC_1976_17_1_a1
ER  - 
%0 Journal Article
%A Durdil, Jiří
%T On collective compactness of derivatives
%J Commentationes Mathematicae Universitatis Carolinae
%D 1976
%P 7-30
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1976_17_1_a1/
%G en
%F CMUC_1976_17_1_a1
Durdil, Jiří. On collective compactness of derivatives. Commentationes Mathematicae Universitatis Carolinae, Tome 17 (1976) no. 1, pp. 7-30. http://geodesic.mathdoc.fr/item/CMUC_1976_17_1_a1/

[1] P. M. ANSELONE: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, 1971. | MR | Zbl

[2] P. M. ANSELONE: Collectively compact and totally bounded sets of linear operators. J. Math. Mech. 17 (1968), 613-622. | MR | Zbl

[3] P. M. ANSELONE: Compactness properties of sets of operators and their adjoints. Math. Z. 113 (1970), 233-236. | MR

[4] P. M. ANSELONE R. H. MOORE: Approximate solutions of integral and operator equations. J. Math. Anal. Appl. 9 (1964), 268-277. | MR

[5] P. M. ANSELONE T. W. PALMER: Collectively compact sets of linear operators. Pac. J. Math. 25 (1968), 417-422. | MR

[6] P. M. ANSELONE T. W. PALMER: Spectral analysis of collectively compact strongly convergent operator sequences. Pac. J. Math. 25 (1968), 423-431. | MR

[7] J. W. DANIEL: Collectively compact sets of gradient mappings. Indag. Math. 30 (1968), 270-279. | MR | Zbl

[8] J. D. De PREE J. A. HIGGINS: Collectively compact sets of linear operators. Math. Z. 115 (1970), 366-370. | MR

[9] M. V. DESHPANDE N. E. JOSHI: Collectively compact and semi-compact sets of linear operators in topological vector spaces. Pac. J. Math. 43 (1972), 317-326. | MR

[10] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex Functions and Orlicz Spaces. Moscow, 1958 (Russian).

[11] J. LLOYD: Differentiable mappings on topological vector spaces. Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. | MR | Zbl

[12] R. H. MOORE: Differentiability and convergence of compact nonlinear operators. J. Math. Anal. Appl. 16 (1966), 65-72. | MR

[13] K. J. PALMER: On the complete continuity of differentiate mappings. J. Austr. Math. Soc. 9 (1969), 441-444. | MR

[14] M. VAINBERG: Variational Methods for the Study of Nonlinear Operators. Moscow, 1956 (Russian).

[15] V. I. AVERBUKH O. G. SMOLYANOV: The theory of differentiation in linear topological spaces. Usp. Mat. Nauk 22 (1967), 201-258 (Russian).

[16] V. I. AVERBUKH O. G. SMOLYANOV: The various definitions of the derivative in linear topological spaces. Usp. Mat. Nauk 23 (1968), 67-113 (Russian).

[17] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... . in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. | MR