Epireflective subcategories of TOP need not be cowell-powered
Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 4, pp. 713-716 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 18A40, 54A10, 54B30, 54B99
@article{CMUC_1975_16_4_a9,
     author = {Herrlich, Horst},
     title = {Epireflective subcategories of {TOP} need not be cowell-powered},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {713--716},
     year = {1975},
     volume = {16},
     number = {4},
     mrnumber = {0425882},
     zbl = {0312.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a9/}
}
TY  - JOUR
AU  - Herrlich, Horst
TI  - Epireflective subcategories of TOP need not be cowell-powered
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1975
SP  - 713
EP  - 716
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a9/
LA  - en
ID  - CMUC_1975_16_4_a9
ER  - 
%0 Journal Article
%A Herrlich, Horst
%T Epireflective subcategories of TOP need not be cowell-powered
%J Commentationes Mathematicae Universitatis Carolinae
%D 1975
%P 713-716
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a9/
%G en
%F CMUC_1975_16_4_a9
Herrlich, Horst. Epireflective subcategories of TOP need not be cowell-powered. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 4, pp. 713-716. http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a9/

[1] H. HERRLICH: On the concept of reflections in general topology. Contr. Extension Th. Topol. Str., Symp. Berlin 1957 (1969), 103-114. | MR

[2] H. HERRLICH: Topologische Reflexionen und Coreflexionen. Lecture Notes Math. 78 (1968). | MR | Zbl

[3] H. HERRLICH: Categorical topology. Gen. Topol. Appl. 1 (1971), 1-15. | MR | Zbl

[4] V. KANNAN M. RAJAGOPALAN: On rigidity of groups of homeomorphisms. Proc. III. Topol. Symp. 1971 (197-2), 231-234. | MR

[5] V. KANNAN M. RAJAGOPALAN: Constructions and applications of rigid spaces. preprint.

[6] V. KOUBEK: Each concrete category has a representation by $T_2$ paracompact topological spaces. Comment. Math. Univ. Carollnae 15 (1974), 655-664. | MR | Zbl

[7] V. TRNKOVÁ: Non-constant continuous mappings of metric or compact Hausdorff spaces. Comment. Math. Univ. Carolinae 13 (1972), 282-295. | MR