Concerning the rate of convergence of Newton's process
Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 4, pp. 699-705 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46N40, 65H05, 65H10, 65J05
@article{CMUC_1975_16_4_a7,
     author = {Pt\'ak, Vlastimil},
     title = {Concerning the rate of convergence of {Newton's} process},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {699--705},
     year = {1975},
     volume = {16},
     number = {4},
     mrnumber = {0398092},
     zbl = {0314.65023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a7/}
}
TY  - JOUR
AU  - Pták, Vlastimil
TI  - Concerning the rate of convergence of Newton's process
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1975
SP  - 699
EP  - 705
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a7/
LA  - en
ID  - CMUC_1975_16_4_a7
ER  - 
%0 Journal Article
%A Pták, Vlastimil
%T Concerning the rate of convergence of Newton's process
%J Commentationes Mathematicae Universitatis Carolinae
%D 1975
%P 699-705
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a7/
%G en
%F CMUC_1975_16_4_a7
Pták, Vlastimil. Concerning the rate of convergence of Newton's process. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 4, pp. 699-705. http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a7/

[1] V. PTÁK: Deux théorèmes de factorisation. Compter Rendus Ac. Sci. Paris 278 (1974), 1091-1094. | MR

[2] V. PTÁK: A theorem of the closed graph type. Manuscripts Math. 13 (1974), 109-130. | MR

[3] V. PTÁK: A quantitative refinement of the closed graph theorem. Czech. Math. Journal 99 (1974), 503-506. | MR

[4] V. PTÁK: Nondiscrete mathematical induction and iterative existence proofs. Linear Algebra and its Applications (in print).

[5] V. PTÁK: The rate of convergence of Newton's method. Numerische Mathematik (in print).

[6] V. PTÁK: A rate of convergence. Abh. aus dem Math. Seminar Hamburg (in print).