Nonconform finite element procedure for solving of the simply supported plate problem
Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 4, pp. 717-733 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65N30, 73-65
@article{CMUC_1975_16_4_a10,
     author = {Janovsk\'y, Vladim{\'\i}r},
     title = {Nonconform finite element procedure for solving of the simply supported plate problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {717--733},
     year = {1975},
     volume = {16},
     number = {4},
     mrnumber = {0400746},
     zbl = {0346.65057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a10/}
}
TY  - JOUR
AU  - Janovský, Vladimír
TI  - Nonconform finite element procedure for solving of the simply supported plate problem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1975
SP  - 717
EP  - 733
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a10/
LA  - en
ID  - CMUC_1975_16_4_a10
ER  - 
%0 Journal Article
%A Janovský, Vladimír
%T Nonconform finite element procedure for solving of the simply supported plate problem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1975
%P 717-733
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a10/
%G en
%F CMUC_1975_16_4_a10
Janovský, Vladimír. Nonconform finite element procedure for solving of the simply supported plate problem. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 4, pp. 717-733. http://geodesic.mathdoc.fr/item/CMUC_1975_16_4_a10/

[1] BRAMBLE J. H., HILBERT S. H.: Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math. 17 (1971), 362-369. | MR | Zbl

[2] CIARLET P. G.: Conforming and nonconforming finite element methods for solving the plate problem. paper presented at the Conference on the Numerical Solution of Differential Equations, University of Dundee, July 3-6, 1973. | MR

[3] NEČAS J.: Les méthodes directes en théorle des équations elliptiques. Academia, Prague 1967. | MR

[4] PRAGER W.: Variational Principles for Elastic Plates with Relaxed Continuity Requirements. Int. J. Solids Structures 4 (1968), 837-844. | Zbl

[5] RAVIART P. A.: Méthods des éléments finis, cours du IIIeme cycle. Université de Paris VI.

[6] RAVIART P. A.: Hybrid finite element methods for solving second order elliptique equations. to appear.