@article{CMUC_1975_16_3_a9,
author = {Koliha, Jarom{\'\i}r J.},
title = {The product of relatively regular operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {531--539},
year = {1975},
volume = {16},
number = {3},
mrnumber = {0380473},
zbl = {0309.47013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_3_a9/}
}
Koliha, Jaromír J. The product of relatively regular operators. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 3, pp. 531-539. http://geodesic.mathdoc.fr/item/CMUC_1975_16_3_a9/
[1] F. V. ATKINSON: On relatively regular operators. Acta Sci. Math. Szeged 15 (1953), 38-56. | MR | Zbl
[2] R. BOULDIN: The product of operators with closed range. Tohoku Math. J. 25 (1973), 359-363. | MR | Zbl
[3] R. BOULDIN: The pseudo-inverse of a product. SIAM J. Appl. Math. 24 (1973), 489-495. | MR | Zbl
[4] S. R. CARADUS: An equational approach to products of relatively regular operators. (submitted to Aequationes Math.). | MR | Zbl
[5] S. R. CARADUS: Operator theory of the pseudo-inverse. Queen's Papers in Pure and Applied Mathematics, No. 38, Quen's University, Kingston, Ont., 1974. | Zbl
[6] C. W. GROETSCH: Representations of the generalized inverse. J. Math. Anal. Appl. 49 (1975), 154-157. | MR | Zbl
[7] J. J. KOLIHA: Convergent and stable operators and their generalization. J. Math. Anal. Appl. 43 (1973), 778-794. | MR | Zbl
[8] J. J. KOLIHA: Convergence of an operator series. Research Report No. 19, Department of Mathematics, University of Melbourne, 1974.
[9] M. Z. NASHED: Generalized inverses, normal solvability and iteration for singular operator equations. in Nonlinear Functional Analysis and Applications, L. B. Rall, Ed., Academic Press, New York, 1971, pp. 311-359. | MR | Zbl
[10] A. E. TAYLOR: Introduction to Functional Analysis. J. Wiley, New York, 1958. | MR | Zbl