@article{CMUC_1975_16_3_a8,
author = {Rosick\'y, Ji\v{r}{\'\i}},
title = {Codensity and binding categories},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {515--529},
year = {1975},
volume = {16},
number = {3},
mrnumber = {0376800},
zbl = {0314.18003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_3_a8/}
}
Rosický, Jiří. Codensity and binding categories. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 3, pp. 515-529. http://geodesic.mathdoc.fr/item/CMUC_1975_16_3_a8/
[1] Z. HEDRLÍN: Extensions of structures and full embeddings of categories. Proc. Intern. Congr. of Mathematicians, Nice 1970 (Gauthier-Villars, Paris 1971). | MR
[2] Z. HEDRLÍN A. PULTR: On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406. | MR
[3] Z. HEDRLÍN A. PULTR: On categorical embeddings of topological structures into algebraic. Comment. Math. Univ. Caroline 7 (1966), 377-400. | MR
[4] H. HERRLICH G. E. STRECKSR: Category Theory. Allyn and Bacon, Boston 1973.
[5] J. R. ISBELL: Adequate subcategories. Illinois J. Math. 4 (I960), 541-552. | MR | Zbl
[6] J. R. ISBELL: Subobjects, adequacy, completeness and categories of algebras. Rozprawy Matematyczne XXXVI, Warszawa 1964. | Zbl
[7] J. R. ISBELL: Structure of categories. Bull. Amer. Math. Soc. 72 (1966), 619-655. | MR | Zbl
[8] J. R. ISBELL: Small adequate subcategories. J. London Math. Soc. 43 (1968), 242-246. | MR | Zbl
[9] J. LAMBEK: Completion of categories. Lecture Notes in Math. 24, Srpinger-Verlag, Berlin - New York 1966. | MR
[10] S. Mac LANE: Categories for the Working Mathematician. Springer-Verlag, Berlin - New York 1971. | MR | Zbl
[11] J. ROSICKÝ: Full embeddings with a given restriction. Comment. Math. Univ. Carolinae 14 (1973), 519-540. | MR
[12] J. ROSICKÝ: Concerning binding categories. submitted to Czech. Math. J.
[13] J. ROSICKÝ: On extensions of full embeddings and binding categories. Comment. Math. Univ. Carolinae 15 (1974), 631-635. | MR
[14] A. PULTR: On selecting of morphisms among all mappings between underlying sets of objects in concrete categories and realizations of these. Comment. Math. Univ. Carolinae 8 (1967), 53-83. | MR | Zbl
[15] J. SICHLER: Testing categories and strong universality. Can. J. Math. XXV (1973), 370-386. | MR | Zbl