Applications of the induced morphism theorem in regular categories
Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 2, pp. 359-375 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 18A20, 18A30, 18A35, 18D05, 18E10
@article{CMUC_1975_16_2_a11,
     author = {Fay, Temple H.},
     title = {Applications of the induced morphism theorem in regular categories},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {359--375},
     year = {1975},
     volume = {16},
     number = {2},
     mrnumber = {0424893},
     zbl = {0305.18002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_2_a11/}
}
TY  - JOUR
AU  - Fay, Temple H.
TI  - Applications of the induced morphism theorem in regular categories
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1975
SP  - 359
EP  - 375
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1975_16_2_a11/
LA  - en
ID  - CMUC_1975_16_2_a11
ER  - 
%0 Journal Article
%A Fay, Temple H.
%T Applications of the induced morphism theorem in regular categories
%J Commentationes Mathematicae Universitatis Carolinae
%D 1975
%P 359-375
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1975_16_2_a11/
%G en
%F CMUC_1975_16_2_a11
Fay, Temple H. Applications of the induced morphism theorem in regular categories. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 2, pp. 359-375. http://geodesic.mathdoc.fr/item/CMUC_1975_16_2_a11/

[1] J. ACZEL: A remark on functional dependence. J. Math. Psych. 2 (1965), 125-127. | MR | Zbl

[2] M. BARR: Exact categories. Springer - Verlag Lecture Notes in Mathematics, 236 (1971), 1-120. | Zbl

[3] A. R. BEDNAREK A. D. WALLACE: A relation-theoretic result with applications in topological algebra. Math. Systems Theory 1 (1963), 217-224. | MR

[4] N. BOURBAKI: Théorie des ensembles. Livre 1 (Hermann, Paris I960). | Zbl

[5] W. D. BURGESS X. CAICEDO: Relations and congruences in regular categories. Preprint. | MR

[6] A. H. CLIFFORD G. B. PRESTON: The algebraic theory of semigroups. Vol. 1, Amer. Math. Soc. Surveys 7 (1961). | MR

[7] J. M. DAY: Semigroup Acts. Algebraic and Topological, Second Florida Symposium on automata and semigroups, Univ. of Fla. (1971).

[8] T. H. FAY: A natural transformation approach to additivity. Preprint.

[9] T. H. FAY: A note on when a regular category is exact. Preprint.

[10] P. A. GRILLET: Regular categories. Springer - Verlag Lecture Notes in Mathematics 236 (1971), 121-222. | MR | Zbl

[11] H. HERRLICH: Algebraic categories. An axiomatic approach. Preprint.

[12] H. HERRLICH G. E. STRECKER: Category Theory. (Allyn and Bacon, Boston 1973). | MR

[13] A. KLEIN: Relations in categories. Illinois J. Math. 14 (1970), 536-550. | MR | Zbl

[14] J. LAMBEK: Goursat's Theorem and the Zassenhaus Lemma. Can. J. Math. 10 (1957), 45-56. | MR

[15] J. LAMBEK: Goursat's Theorem and homological algebra. Can. Math. Bull. 7 (19S4), 597-607. | MR

[16] S. MacLANE: An algebra of additive relations. Proc. Mat. Acad. Sci. 47 (1961), 1043-1051. | MR | Zbl

[17] M. MARTIN: On the Induced Function Theorem. J. Undergrad. Math. 5 (1973), 5-8.

[18] M. MARTIN: The Induced Function Theorem and some equivalent theorems. To appear J. Undergrad. Math. | MR

[19] J. MEISEN: Relations in Categories. Ph. D. Thesis, McGill Univ. (1972). | MR

[20] E. M. NORRIS: Some Structure Theorems for Topological Machines. Ph. D. Thesis, Univ. of Fla. (1969).

[21] E. M. NORRIS: Relationally induced semigroups. To appear Pacific J. Math. | MR | Zbl

[22] E. M. NORRIS A. R. BEDHAREK: Inducing functions difunctionally. Preprint.

[23] J. RIGUET: Relations binaires, fermetures, correspondances de Galois. Bull. Soc. Math. France 76 (1948), 114-155. | MR | Zbl

[24] J. RIGUET: Quelques propriétées des relations difonctionnelles. C. R. Acad. Sci. Paris 230 (1950), 1999-2000. | MR