Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type
Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 1, pp. 121-138 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K15, 34K99, 47A50, 47H10, 47H15, 47J05
@article{CMUC_1975_16_1_a9,
     author = {Hetzer, Georg},
     title = {Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {121--138},
     year = {1975},
     volume = {16},
     number = {1},
     mrnumber = {0364814},
     zbl = {0298.47034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_1_a9/}
}
TY  - JOUR
AU  - Hetzer, Georg
TI  - Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1975
SP  - 121
EP  - 138
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1975_16_1_a9/
LA  - en
ID  - CMUC_1975_16_1_a9
ER  - 
%0 Journal Article
%A Hetzer, Georg
%T Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type
%J Commentationes Mathematicae Universitatis Carolinae
%D 1975
%P 121-138
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1975_16_1_a9/
%G en
%F CMUC_1975_16_1_a9
Hetzer, Georg. Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 1, pp. 121-138. http://geodesic.mathdoc.fr/item/CMUC_1975_16_1_a9/

[1] A. L. BADOEV B. N. SADOVSKI: An example of a densifying operator in the theory of differential equations with a deviating argument of neutral type. Soviet Math. Dokl. 10 (1969), 724-728. | MR

[2] M. A. CRUZ J. K. HALE: Existence, uniqueness and continuous dependence for hereditary systems. Annali di Mathematica, Ser. 3, 85 (1970), 63-81. | MR

[3] S. FUČÍK: Further remarks on a theorem by E. M. Landesman and A. C. Lazer. Comment. Math. Univ. Carolinae 15 (1974), 259-271. | MR

[4] S. FUČÍK M. KUČERA J. NEČAS: Ranges of nonlinear asymptotically linear operators. (to appear in J. Differential Equations). | MR

[5] J. K. HALE J. MAWHIN: Coincidence degree and periodic solutions of neutral equations. J. Differential Equations 15 (1974), 295-307. | MR

[6] G. HETZER: Some remarks on $\phi$ -operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations. (to appear). | MR | Zbl

[7] E. M. LANDESMAN A. C. LAZER: Nonlinear perturbations of linear boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623. | MR

[8] J. MAWHIN: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. | MR | Zbl

[9] J. MAWHIN: The solvability of some operator equations with a quasibound nonlinearity in normed spaces. J. Math. Anal. Appl. 45 (1974), 455-467. | MR

[10] J. MAWHIN: Nonlinear perturbations of Gredholm mappings in normed spaces and applications to differential equations. Trabalho de Matematica Nr. 61, Univ. of Brasília 1974. | MR

[11] J. NEČAS: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14 (1974), 63-72. | MR

[12] R. D. NUSSBAUM: A generalization of the Ascoli theorem and an application to functional differential equations. J. Math. Anal. Appl. 35 (1971), 600-610. | MR | Zbl

[13] R. D. NUSSBAUM: Degree theory for local condensing maps. J. Math. Anal. Appl. 37 (1972), 741-766. | MR | Zbl

[14] R. D. NUSSBAUM: Existence and uniqueness theorems for some functional differential equations of neutral type. J. Differential Equations 11 (1972), 607-623. | MR | Zbl

[15] B. N. SADOVSKI: Applications to topological methods in the theory of periodic solutions of nonlinear differential operator equations of neutral type. Soviet Math. Dokl. 12 (1971), 1543-1547.

[16] B. N. SADOVSKI: Limit-compact and condensing operators. Russian Math. Surveys 27 (1972), 85-155. | MR

[17] S. A. WILLIAMS: A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem. J. Differential Equations 8 (1970), 580-586. | MR