@article{CMUC_1975_16_1_a16,
author = {Frol{\'\i}k, Zden\v{e}k},
title = {On uniform spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {189--199},
year = {1975},
volume = {16},
number = {1},
mrnumber = {0370516},
zbl = {0302.54029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1975_16_1_a16/}
}
Frolík, Zdeněk. On uniform spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 16 (1975) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/CMUC_1975_16_1_a16/
[1] E. ČECH: Topological Spaces. Revised ed. by Z. Frolík and M. Katětov, Academia, Praha, and Academic Press, New York - London, 1965. | MR
[2] Z. FROLÍK: Topological methods in measure theory and the theory of measurable spaces. Proc. 3rd Prague Top. Symp. 1971 - Acadamia and Academic Press 1972, p. 127-139. | MR
[3] Z. FROLÍK: Prime filters with CIP. Comment. Math. Univ. Carolinae 13 (1972), 553-575. | MR
[4] Z. FROLÍK: Baire sets and uniformities on complete metric spaces. Comment. Math. Univ. Carolinae 13 (1972), 137-147. | MR
[5] Z. FROLÍK: Interplay of meaaurable and uniform spaces. Proc. 2nd Int. Top. Symp. Budva 1972, Beograd 1973, 96-99.
[6] Z. FROLÍK: Basic refinements of uniform spaces. Proc. 2nd Int. Top. Symp. Pittsburgh 1972, Springer Lecture notes 378, p. 140-158. | MR
[7] Z. FROLÍK: A note on metric-fine spaces. Proc. Amer. Math. Soc. 46 (1974), 111-119. | MR
[8] Z. FROLÍK: Measurable uniform spaces. Pacif. J. Math. 1974. | MR
[9] Z. FROLÍK: Locally $e$-fine metric-fine spaces. Trans. Amer. Math. Soc. 196 (1974), 23 -27. | MR
[10] Z. FROLÍK: Three uniformities associated with uniformly continuous functions. Proc. Coll. Algebras of continuous functions, Roma 1973.
[11] Z. FROLÍK: Uniform maps into normed spaces. Ann. Inst. Fourier 24, 3 (1974), 68-80. | MR
[12] V. KANNAN: Reflective sum coreflective subcategories in topology. Math. Ann. 195 (1972), 168-174.
[13] A. KUCIA: On coverings of a uniformity. Coll. Math. 27 (1973), 73-74. | MR | Zbl
[14] D. PREISS: Completely additive disjoint system of Baire sets is of bounded class. Comment. Math. Univ. Carolinae 15 (1974), 341-344. | MR | Zbl
[15] G. VIDOSSICH: A note on cardinal reflections in the category of uniform spaces. Proc. Amer. Math. Soc. 23 (1969), 55-58. | MR | Zbl
[16] J. WILLIAMS: A formal analogy between proximity and finite dimensionality. Coll. Math. 31 (1974), 71-82. | MR | Zbl