Each concrete category has a representation by $T_2$ paracompact topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 655-664 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 18B15, 54D10, 54D20, 54G15, 54H10
@article{CMUC_1974_15_4_a7,
     author = {Koubek, V\'aclav},
     title = {Each concrete category has a representation by $T_2$ paracompact topological spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {655--664},
     year = {1974},
     volume = {15},
     number = {4},
     mrnumber = {0354806},
     zbl = {0291.54019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/}
}
TY  - JOUR
AU  - Koubek, Václav
TI  - Each concrete category has a representation by $T_2$ paracompact topological spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 655
EP  - 664
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/
LA  - en
ID  - CMUC_1974_15_4_a7
ER  - 
%0 Journal Article
%A Koubek, Václav
%T Each concrete category has a representation by $T_2$ paracompact topological spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 655-664
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/
%G en
%F CMUC_1974_15_4_a7
Koubek, Václav. Each concrete category has a representation by $T_2$ paracompact topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 655-664. http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/

[1] H. COOK: Continua which admit only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60 (1966), 241-249. | MR

[2] H. HERRLICH: On the concept of reflections in general topology. Proc. Symp. on extension theory of topological structures, Berlin 1967.

[3] L. KUČERA: Úplná vnoření. Thesis, Prague 1973.

[4] A. PULTR: On selecting of morphisms among all mappings between underlying sets of objects in concrete categories and realizations of these. Comment. Math. Univ. Carolinae 8 (1967), 53-83. | MR | Zbl

[5] V. TRNKOVÁ: Non-constant continuous mappings of metric or compact Hausdorff spaces. Comment. Math. Univ. Carolinae 13 (1972), 283-295. | MR