Each concrete category has a representation by $T_2$ paracompact topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 655-664
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1974_15_4_a7,
author = {Koubek, V\'aclav},
title = {Each concrete category has a representation by $T_2$ paracompact topological spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {655--664},
year = {1974},
volume = {15},
number = {4},
mrnumber = {0354806},
zbl = {0291.54019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/}
}
TY - JOUR AU - Koubek, Václav TI - Each concrete category has a representation by $T_2$ paracompact topological spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1974 SP - 655 EP - 664 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/ LA - en ID - CMUC_1974_15_4_a7 ER -
Koubek, Václav. Each concrete category has a representation by $T_2$ paracompact topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 655-664. http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a7/
[1] H. COOK: Continua which admit only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60 (1966), 241-249. | MR
[2] H. HERRLICH: On the concept of reflections in general topology. Proc. Symp. on extension theory of topological structures, Berlin 1967.
[3] L. KUČERA: Úplná vnoření. Thesis, Prague 1973.
[4] A. PULTR: On selecting of morphisms among all mappings between underlying sets of objects in concrete categories and realizations of these. Comment. Math. Univ. Carolinae 8 (1967), 53-83. | MR | Zbl
[5] V. TRNKOVÁ: Non-constant continuous mappings of metric or compact Hausdorff spaces. Comment. Math. Univ. Carolinae 13 (1972), 283-295. | MR