Hamiltonian circuits in cubic graphs
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 627-630 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C20, 05C35
@article{CMUC_1974_15_4_a5,
     author = {Nin\v{c}\'ak, J\'an},
     title = {Hamiltonian circuits in cubic graphs},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {627--630},
     year = {1974},
     volume = {15},
     number = {4},
     mrnumber = {0354444},
     zbl = {0294.05118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a5/}
}
TY  - JOUR
AU  - Ninčák, Ján
TI  - Hamiltonian circuits in cubic graphs
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 627
EP  - 630
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a5/
LA  - en
ID  - CMUC_1974_15_4_a5
ER  - 
%0 Journal Article
%A Ninčák, Ján
%T Hamiltonian circuits in cubic graphs
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 627-630
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a5/
%G en
%F CMUC_1974_15_4_a5
Ninčák, Ján. Hamiltonian circuits in cubic graphs. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 627-630. http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a5/

[1] BOSÁK J.: Hamiltonian lines in cubic graphs. Theory of graphs (Proc. Int. Symp. Rome, July 1966, ed. P. Hosenstiehl), Gordon and Breach, New York, 1967, 35-46. | MR

[2] CASTANGA F., PRINS G.: Every generalized Peterson graph has a fait coloring. Pacif. J. Math. 40 (1972), 53-58. | MR