On the geometric characterization of differentiability. II
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 727-744
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46G05, 47H99, 58C20
@article{CMUC_1974_15_4_a12,
     author = {Durdil, Ji\v{r}{\'\i}},
     title = {On the geometric characterization of differentiability. {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {727--744},
     year = {1974},
     volume = {15},
     number = {4},
     mrnumber = {0426019},
     zbl = {0294.58003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a12/}
}
TY  - JOUR
AU  - Durdil, Jiří
TI  - On the geometric characterization of differentiability. II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 727
EP  - 744
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a12/
LA  - en
ID  - CMUC_1974_15_4_a12
ER  - 
%0 Journal Article
%A Durdil, Jiří
%T On the geometric characterization of differentiability. II
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 727-744
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a12/
%G en
%F CMUC_1974_15_4_a12
Durdil, Jiří. On the geometric characterization of differentiability. II. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 727-744. http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a12/

[1] M. S. BAZARAA J. J. GOODE M. Z. NASHED: On the cones of tangents with applications to mathematical programming. J. Opt. Th. Appl. 13 (1974), 389-426. | MR

[2] G. BOULIGAND: Introduction à la Géométire Infinitésimale Directe. Paris 1933.

[3] T. M. FLETT: Mathematical Analysis. New York 1966. | MR | Zbl

[4] T. M. FLETT: On differentiation in normed vector spaces. J. London Math. Soc. 42 (1967), 523-533. | MR

[5] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... in Nonlinear Functional Analysis and Applications (ed. by J. B. Rall), New York 1971. | MR

[6] E. L. ROETMAN: Tangent planes and differentiation. Math. Mag. 43 (1970), 1-7. | MR | Zbl

[7] H. A. THURSTON: On the definition of a tangent line. Amer. Math. Monthly 71 (1964), 1099-1103. | MR

[8] H. A. THURSTON: Tangents: an elementary survey. Math. Mag. 42 (l969), 1-11. | MR

[9] P. P. VARAIYA: Nonlinear programming in Banach space. SIAM J. Appl. Math. 15 (1967), 284-293. | MR | Zbl

[10] A. J. WARD: On Jordan curves possessing a tangent everywhere. Fund. Math. 28 (1937), 280- 288.

[11] J. DURDIL: On the geometric characterization of differentiability I. Comment. Math. Univ. Carol. 15 (1974), 521-540. | MR | Zbl