@article{CMUC_1974_15_4_a12,
author = {Durdil, Ji\v{r}{\'\i}},
title = {On the geometric characterization of differentiability. {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {727--744},
year = {1974},
volume = {15},
number = {4},
mrnumber = {0426019},
zbl = {0294.58003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a12/}
}
Durdil, Jiří. On the geometric characterization of differentiability. II. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 727-744. http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a12/
[1] M. S. BAZARAA J. J. GOODE M. Z. NASHED: On the cones of tangents with applications to mathematical programming. J. Opt. Th. Appl. 13 (1974), 389-426. | MR
[2] G. BOULIGAND: Introduction à la Géométire Infinitésimale Directe. Paris 1933.
[3] T. M. FLETT: Mathematical Analysis. New York 1966. | MR | Zbl
[4] T. M. FLETT: On differentiation in normed vector spaces. J. London Math. Soc. 42 (1967), 523-533. | MR
[5] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... in Nonlinear Functional Analysis and Applications (ed. by J. B. Rall), New York 1971. | MR
[6] E. L. ROETMAN: Tangent planes and differentiation. Math. Mag. 43 (1970), 1-7. | MR | Zbl
[7] H. A. THURSTON: On the definition of a tangent line. Amer. Math. Monthly 71 (1964), 1099-1103. | MR
[8] H. A. THURSTON: Tangents: an elementary survey. Math. Mag. 42 (l969), 1-11. | MR
[9] P. P. VARAIYA: Nonlinear programming in Banach space. SIAM J. Appl. Math. 15 (1967), 284-293. | MR | Zbl
[10] A. J. WARD: On Jordan curves possessing a tangent everywhere. Fund. Math. 28 (1937), 280- 288.
[11] J. DURDIL: On the geometric characterization of differentiability I. Comment. Math. Univ. Carol. 15 (1974), 521-540. | MR | Zbl