Free algebras and automata realizations in the language of categories
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 589-602 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08A25, 08Axx, 08B20, 18A30, 18B20, 18C15, 18E10, 68A25, 68Q45
@article{CMUC_1974_15_4_a1,
     author = {Ad\'amek, Ji\v{r}{\'\i}},
     title = {Free algebras and automata realizations in the language of categories},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {589--602},
     year = {1974},
     volume = {15},
     number = {4},
     mrnumber = {0352209},
     zbl = {0293.18006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a1/}
}
TY  - JOUR
AU  - Adámek, Jiří
TI  - Free algebras and automata realizations in the language of categories
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 589
EP  - 602
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a1/
LA  - en
ID  - CMUC_1974_15_4_a1
ER  - 
%0 Journal Article
%A Adámek, Jiří
%T Free algebras and automata realizations in the language of categories
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 589-602
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a1/
%G en
%F CMUC_1974_15_4_a1
Adámek, Jiří. Free algebras and automata realizations in the language of categories. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 4, pp. 589-602. http://geodesic.mathdoc.fr/item/CMUC_1974_15_4_a1/

[1] J. ADÁMEK: Limits and colimits in the generalized algebraic categories. to appear in Czech. Math. J. | MR

[2] J. ADÁMEK V. KOUBEK: Coequlizers in the generalized algebraic categories. Comment. Math. Univ. Carolinae 13 (1972), 311-324. | MR

[3] J. ADÁMEK V. KOUBEK V. POHLOVÁ: The colimits in the generalized algebraic categories. Acta Univ. Carolinae 13 (1972), 29-40. | MR

[4] M. A. ARBIB E. G. MANES: A categorisťs view of automata and systems. Proceedings of the first intemational symposium: category theory applied to computation and control, Univ. of Mass. (1974), 62-78.

[5] V. KURKOVÁ, POHLOVÁ V. KOUBEK: When is a generalized algebraic category monadic?. Comment. Math. Univ. Carolinae 15 (1974), 577-587. | MR

[6] V. TRNKOVÁ P. GORALČÍK: On products in the generalized algebraic categories. Comment. Math. Univ. Carolinae 10 (1969), 49-89. | MR

[7] H. HERRLICH G. E. STRECKER: Category theory. Allyn and Bacon, 1973. | MR