Remark on periodic solutions of a linear wave equation in one dimension
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 3, pp. 513-519 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 10P05, 11J70, 35B10, 35L05
@article{CMUC_1974_15_3_a9,
     author = {Nov\'ak, B\v{r}etislav},
     title = {Remark on periodic solutions of a linear wave equation in one dimension},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {513--519},
     year = {1974},
     volume = {15},
     number = {3},
     mrnumber = {0355354},
     zbl = {0301.35053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a9/}
}
TY  - JOUR
AU  - Novák, Břetislav
TI  - Remark on periodic solutions of a linear wave equation in one dimension
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 513
EP  - 519
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a9/
LA  - en
ID  - CMUC_1974_15_3_a9
ER  - 
%0 Journal Article
%A Novák, Břetislav
%T Remark on periodic solutions of a linear wave equation in one dimension
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 513-519
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a9/
%G en
%F CMUC_1974_15_3_a9
Novák, Břetislav. Remark on periodic solutions of a linear wave equation in one dimension. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 3, pp. 513-519. http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a9/

[1] A. H. KRUSE: Estimates of $\sum \sp{N}\sb{k=1}\,k\sp{-s}\,\langle kx\rangle \sp{-t}$. Acta Arith. 12 (1967), 229-263. | MR

[2] B. NOVÁK: On a certain sum in number theory III. Comment. Math. Univ. Carolinae 13 (1972), 763-775. | MR

[3] de SIMON: Sull' equazione delle onde con termine noto periodico. Rend. Ist. di Matem. Univ. Trieste I (1969), 150-162. | MR | Zbl

[4] O. VEJVODA: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension I. Czech. Math. Journal 14 (89) (1964), 341-382. | MR