On the geometric characterization of differentiability. I
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 3, pp. 521-540
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46G05, 47H99, 58C20
@article{CMUC_1974_15_3_a10,
     author = {Durdil, Ji\v{r}{\'\i}},
     title = {On the geometric characterization of differentiability. {I}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {521--540},
     year = {1974},
     volume = {15},
     number = {3},
     mrnumber = {0426019},
     zbl = {0289.58004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a10/}
}
TY  - JOUR
AU  - Durdil, Jiří
TI  - On the geometric characterization of differentiability. I
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 521
EP  - 540
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a10/
LA  - en
ID  - CMUC_1974_15_3_a10
ER  - 
%0 Journal Article
%A Durdil, Jiří
%T On the geometric characterization of differentiability. I
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 521-540
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a10/
%G en
%F CMUC_1974_15_3_a10
Durdil, Jiří. On the geometric characterization of differentiability. I. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 3, pp. 521-540. http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a10/

[1] M. S. BAZARAA J. J. GOODE M. Z. NASHED: On the cones of tangents with applications to mathematical programming. J. Opt. Th. Appl. 13 (1974), 369-426. | MR

[2] G. BOULIGAND: Introduction à la Géométrie Infinitésimale Directe. Paris 1932. | Zbl

[3] T. M. FLETT: Mathematical Analysis. New York 1966. | MR | Zbl

[4] T. M. FLETT: On differentiation in normed vector spaces. J. London Math. Soc. 42 (1967), 523-533. | MR

[5] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... in nonlinear Functional Analysis and Applications (ed. by J. B. Rall), New York 1971. | MR

[6] E. L. ROETMAN: Tangent planes and differentiation. Math. Mag. 43 (1970), 1-7. | MR | Zbl

[7] H. A. THURSTON: On the definition of a tangent-line. Amer. Math. Monthly 71 (1964), 1099-1103. | MR

[8] H. A. THURSTON: Tangents: an elementary survey. Math. Mag. 42 (1969), 1-11. | MR

[9] P. P. VARAIYA: Nonlinear programming in Banach space. SIAM J. Appl. Math. 15 (1967), 284-293. | MR | Zbl

[10] A. J. WARD: On Jordan curves possessing a tangent everywhere. Fund. Math. 28 (1937), 280-288.

[11] J. DURDIL: On the geometric characterization of differentiability II. Comment. Math. Univ. Carolinae (to appear). | MR | Zbl

[12] A. E. TAYLOR: Introduction to Functional Analysis. New York 1967.

[13] K. YOSIDA: Functional Analysis. Springer - Verlag 1965. | Zbl