@article{CMUC_1974_15_3_a10,
author = {Durdil, Ji\v{r}{\'\i}},
title = {On the geometric characterization of differentiability. {I}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {521--540},
year = {1974},
volume = {15},
number = {3},
mrnumber = {0426019},
zbl = {0289.58004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a10/}
}
Durdil, Jiří. On the geometric characterization of differentiability. I. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 3, pp. 521-540. http://geodesic.mathdoc.fr/item/CMUC_1974_15_3_a10/
[1] M. S. BAZARAA J. J. GOODE M. Z. NASHED: On the cones of tangents with applications to mathematical programming. J. Opt. Th. Appl. 13 (1974), 369-426. | MR
[2] G. BOULIGAND: Introduction à la Géométrie Infinitésimale Directe. Paris 1932. | Zbl
[3] T. M. FLETT: Mathematical Analysis. New York 1966. | MR | Zbl
[4] T. M. FLETT: On differentiation in normed vector spaces. J. London Math. Soc. 42 (1967), 523-533. | MR
[5] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... in nonlinear Functional Analysis and Applications (ed. by J. B. Rall), New York 1971. | MR
[6] E. L. ROETMAN: Tangent planes and differentiation. Math. Mag. 43 (1970), 1-7. | MR | Zbl
[7] H. A. THURSTON: On the definition of a tangent-line. Amer. Math. Monthly 71 (1964), 1099-1103. | MR
[8] H. A. THURSTON: Tangents: an elementary survey. Math. Mag. 42 (1969), 1-11. | MR
[9] P. P. VARAIYA: Nonlinear programming in Banach space. SIAM J. Appl. Math. 15 (1967), 284-293. | MR | Zbl
[10] A. J. WARD: On Jordan curves possessing a tangent everywhere. Fund. Math. 28 (1937), 280-288.
[11] J. DURDIL: On the geometric characterization of differentiability II. Comment. Math. Univ. Carolinae (to appear). | MR | Zbl
[12] A. E. TAYLOR: Introduction to Functional Analysis. New York 1967.
[13] K. YOSIDA: Functional Analysis. Springer - Verlag 1965. | Zbl