@article{CMUC_1974_15_2_a13,
author = {Fu\v{c}{\'\i}k, Svatopluk and Lovicar, Vladim{\'\i}r},
title = {Boundary value and periodic problem for the equation $x''(t)+g(x(t))=p(t)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {351--355},
year = {1974},
volume = {15},
number = {2},
mrnumber = {0348176},
zbl = {0284.34018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a13/}
}
TY - JOUR AU - Fučík, Svatopluk AU - Lovicar, Vladimír TI - Boundary value and periodic problem for the equation $x''(t)+g(x(t))=p(t)$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 1974 SP - 351 EP - 355 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a13/ LA - en ID - CMUC_1974_15_2_a13 ER -
%0 Journal Article %A Fučík, Svatopluk %A Lovicar, Vladimír %T Boundary value and periodic problem for the equation $x''(t)+g(x(t))=p(t)$ %J Commentationes Mathematicae Universitatis Carolinae %D 1974 %P 351-355 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a13/ %G en %F CMUC_1974_15_2_a13
Fučík, Svatopluk; Lovicar, Vladimír. Boundary value and periodic problem for the equation $x''(t)+g(x(t))=p(t)$. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 2, pp. 351-355. http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a13/
[1] A. AMBROSETTI G. PRODI: Analisi non lineare. I quaderno, Pisa 1973.
[2] L. CESARI: Functional analysis and periodic solutions of nonlinear equations. Contributions to differential equations I (1963), 149-187. | MR
[3] S. FUČÍK: Nonlinear equations with noninvertible linear part. to appear in Czech. Math. Journal No 3 (1974). | MR
[4] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Spectral analysis of nonlinear operators. Lecture Notes in Math. No 346, Springer Verlag 1973. | MR
[5] E. A. LANDESMAN A. C. LAZER: Nonlinear perturbations of linear elliptic boundary value problem at resonance. J. Math. Mech. 19 (1970), 609-623. | MR
[6] A. M. MICHELETTI: Le soluzioni periodiche dell'equazioni differenziale non lineare $x\sp{\prime\prime}\,(t)+2x\sp{3}\,(t)=f(t)$. Ann. Univ. Ferrara 12 (1967), 103-119. | MR
[7] G. R. MORRIS: A differential equation for undamped forced oscillation. Proc. Cambridge Phil. Soc. 51 (1955), p. 297, 54 (1958) p. 426, 61 (1965), P. 157, 62 (1965), p. 133.
[8] J. NEČAS: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14 (1973), 63-72. | MR
[9] K. SCHMITT: A nonlinear boundary value problem. J. Diff. Equ. 7 (1970), 527-537. | MR | Zbl