A mixed finite element method close to the equilibrium model (Preliminary communication)
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 2, pp. 345-350 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J40, 65N30
@article{CMUC_1974_15_2_a12,
     author = {Haslinger, Jaroslav and Hlav\'a\v{c}ek, Ivan},
     title = {A mixed finite element method close to the equilibrium model {(Preliminary} communication)},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {345--350},
     year = {1974},
     volume = {15},
     number = {2},
     mrnumber = {0345433},
     zbl = {0306.65076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a12/}
}
TY  - JOUR
AU  - Haslinger, Jaroslav
AU  - Hlaváček, Ivan
TI  - A mixed finite element method close to the equilibrium model (Preliminary communication)
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 345
EP  - 350
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a12/
LA  - en
ID  - CMUC_1974_15_2_a12
ER  - 
%0 Journal Article
%A Haslinger, Jaroslav
%A Hlaváček, Ivan
%T A mixed finite element method close to the equilibrium model (Preliminary communication)
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 345-350
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a12/
%G en
%F CMUC_1974_15_2_a12
Haslinger, Jaroslav; Hlaváček, Ivan. A mixed finite element method close to the equilibrium model (Preliminary communication). Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 2, pp. 345-350. http://geodesic.mathdoc.fr/item/CMUC_1974_15_2_a12/

[1] J. HASLINGER I. HLAVÁČEK: A mixed finite element method close to the equilibrium model. I. Dirichlet problem for one equation. (to appear in Numerische Mathematik). | MR

[2] J. HASLINGER I. HLAVÁČEK: A mixed finite element method close to the equilibrium model. II. Plane elasticity. (to appear in Numerische Mathematik). | MR

[3] J. HASLINGER I. HLAVÁČEK: Curved elements in a mixed finite element method. (to appear in Aplikace matematiky).

[4] P. G. CIARLET P. A. RAVIART: General Lagrange and Hermite interpolation in $R_n$ with applications to finite element methods.

[5] M. ZLÁMAL: Curved elements in the finite element method. SIAM J. Numer. Anal. 10 (1973), 229-240. | MR

[6] P. G. CIARLET P. A. RAVIART: Interpolation theory over curved element with applications to finite element methods. Comp. Math. Appl. Mech. Eng., 1 (1972). | MR