Some primitive classes of lattices closed under the formation of projective images
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 1, pp. 65-68
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A20, 06B05
@article{CMUC_1974_15_1_a4,
     author = {Slav{\'\i}k, V\'aclav},
     title = {Some primitive classes of lattices closed under the formation of projective images},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {65--68},
     year = {1974},
     volume = {15},
     number = {1},
     mrnumber = {0340125},
     zbl = {0289.06009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a4/}
}
TY  - JOUR
AU  - Slavík, Václav
TI  - Some primitive classes of lattices closed under the formation of projective images
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 65
EP  - 68
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a4/
LA  - en
ID  - CMUC_1974_15_1_a4
ER  - 
%0 Journal Article
%A Slavík, Václav
%T Some primitive classes of lattices closed under the formation of projective images
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 65-68
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a4/
%G en
%F CMUC_1974_15_1_a4
Slavík, Václav. Some primitive classes of lattices closed under the formation of projective images. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 1, pp. 65-68. http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a4/

[1] G. GRÄTZER: Lattice theory: First concepts and distributive lattices. (Freeman, San Francisco, 1971). | MR

[2] N. D. FILIPOV: Projection of lattices. Mat. Sb. 70 (112) (1966), 36-54. Engl. transl., Amer. Math. Soc. Transl. (2) 96 (1970), 37-58. | MR

[3] J. JEŽEK V. SLAVÍK: Some examples of primitive lattices. (to appear in Acta Univ. Carolinae Math, et Phys.). | MR

[4] I. RIVAL: Projective images of modular (distributive, complemented) lattices are modular (distributive, complemented). Alg. Univ. 2 (1972), 395-396. | MR | Zbl