Weak and strong convergence of projection methods in nonreflexive Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 1, pp. 29-47 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H15, 47J05, 65J05
@article{CMUC_1974_15_1_a2,
     author = {Zezula, Rostislav},
     title = {Weak and strong convergence of projection methods in nonreflexive {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {29--47},
     year = {1974},
     volume = {15},
     number = {1},
     mrnumber = {0350549},
     zbl = {0275.47046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a2/}
}
TY  - JOUR
AU  - Zezula, Rostislav
TI  - Weak and strong convergence of projection methods in nonreflexive Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1974
SP  - 29
EP  - 47
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a2/
LA  - en
ID  - CMUC_1974_15_1_a2
ER  - 
%0 Journal Article
%A Zezula, Rostislav
%T Weak and strong convergence of projection methods in nonreflexive Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1974
%P 29-47
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a2/
%G en
%F CMUC_1974_15_1_a2
Zezula, Rostislav. Weak and strong convergence of projection methods in nonreflexive Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 15 (1974) no. 1, pp. 29-47. http://geodesic.mathdoc.fr/item/CMUC_1974_15_1_a2/

[1] R. ZEZULA: Über eine Näherungsmethode zur Lösung gewisser Randwertaufgaben der Reaktortheorie. Comment. Math. Univ. Carolinae 3 (1962), 37-60. | MR

[2] R. ZEZULA: Convergence of algorithms based on projection methods. (in Czech). Preprint-Report ÚVT ČVUT 1972. Communicated on the 1st Symposium Algorithms in Computing Technique, Štrbské Pleso, Czechoslovakia, November 1972.

[3] R. ZEZULA: Convergence and error estimation for quasiprojection methods in Banach spaces having the uniform approximation property. (in Czech). Submitted to Aplikace matematiky (1973).

[4] W. V. PETRYSHYN: Projection methods in nonlinear numerical functional analysis. Journ. of Mathematics and Mechanics vol. 17, no 4 (1967), 353-372. | MR | Zbl

[5] R. ZEZULA: On an approximative method for solving some boundary value problems in the nuclear reactor theory. CSc-Dissertation, Prague 1967. Report ÚJV ČSAV 1785/67.

[6] R. ZEZULA: On some optimal regulation problems in reactor physics. Preprint-Report ÚVT ČVUT 1973. Communicated on the 5th Colloquium on Reactor Physics, Olbersdorf GDR, March 1973.