@article{CMUC_1973_14_3_a4,
author = {Durdil, Ji\v{r}{\'\i}},
title = {On {Hadamard} differentiability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {457--470},
year = {1973},
volume = {14},
number = {3},
mrnumber = {0326384},
zbl = {0264.58003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_3_a4/}
}
Durdil, Jiří. On Hadamard differentiability. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 3, pp. 457-470. http://geodesic.mathdoc.fr/item/CMUC_1973_14_3_a4/
[1] A. ALEXIEWICZ W. ORLICZ: On the differentials in Banach spaces. Ann. Soc. Pol. Math. 25 (1952), 95-99. | MR
[2] V. I. AVERBUH O. G. SMOLYANOV: The theory of differentiation in linear topological spaces. Uspehi Mat. Nauk 22 : 6 (1967), 201-260. | MR
[3] V. I. AVERBUH O. G. SMOLYANOV: The varioua definitions of the derivative ... . Uspehi Math.Nauk 23 : 4 (1968), 67-114. | MR
[4] J. DIEUDONNÉ: Foundations of Modern Analysis. New York, 1960. | MR
[5] M. A. KRASNOSELSKII P. P. ZABREIKO, others: Integral Operators in the Spaces of Summable Functions. Moscow, 1966.
[6] M. Z. NASHED: Differentiability and related properties of nonlinear operators. Nonlinear Functional Analysis and Applications (ed. L. B. Rail), New York, 1971. | Zbl
[7] M. SOVA: General theory of differentiability in linear topological spaces. Czech. Math. J. 14 (1964), 485-508. | MR | Zbl
[8] M. SOVA: Conditions of differentiability in linear topological spaces. Czech. Math. J. 16 (1966), 339-362. | MR
[9] M. M. VAINBERG: Variational Methods for the Study of Nonlinear Operators. Moscow, 1956.
[10] M. M. VAINBERG: Some questions of differential calculus in linear spaces. Uspehi Math. Nauk 7 : 4 (1952), 55-102. | MR