Why semisets?
Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 3, pp. 397-420 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 02A05, 02D99, 02E05, 02K05, 02K10, 02K15, 03A05, 03E30, 03E70, 03F99
@article{CMUC_1973_14_3_a1,
     author = {H\'ajek, Petr},
     title = {Why semisets?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {397--420},
     year = {1973},
     volume = {14},
     number = {3},
     mrnumber = {0342393},
     zbl = {0268.02005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_3_a1/}
}
TY  - JOUR
AU  - Hájek, Petr
TI  - Why semisets?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1973
SP  - 397
EP  - 420
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1973_14_3_a1/
LA  - en
ID  - CMUC_1973_14_3_a1
ER  - 
%0 Journal Article
%A Hájek, Petr
%T Why semisets?
%J Commentationes Mathematicae Universitatis Carolinae
%D 1973
%P 397-420
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1973_14_3_a1/
%G en
%F CMUC_1973_14_3_a1
Hájek, Petr. Why semisets?. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 3, pp. 397-420. http://geodesic.mathdoc.fr/item/CMUC_1973_14_3_a1/

[1] B. BALCAR: A theorem on supports in the theory of semisets. Comment. Math. Univ. Carolinae 14 (1973), 1-6. | MR | Zbl

[2] B. BALCAR: Teorie polomnožin. (thesis).

[3] K. ČUDA: Contributions to the theory of semisets III. Zeitschr. f. Math. Log. (to appeaг).

[4] A. A. FRAENKEL Y. BAR-HILLEL A. LEVY: Foundations of set theory. North-Holland P. C. 1973. | MR

[5] P. HÁJEK: On semisets. in: Logic Colloquium '69, North-Holland P. C. 1971, p. 67-76. | MR

[6] P. HÁJEK: Contributions to the theory of semisets I. Zeitschr. f. Math. Log. 18 (1972), 241-248. | MR

[7] P. HÁJEK: Degrees of dependence in the theory of semisets. to appear in Fund. Math. (Mostowski's volume). | MR

[8] P. HÁJEK D. HARMANCOVÁ: On generalized credence functions. Kybernetika (to appeaг).

[9] G. KREISEL J. L. KRIVINE: Modelltheorie. Springer Verlag, 1972. | MR

[10] J. MLČEK A. SOCHOR: Contributions to the theory of semisets II. Zeitschr. f. Math. Log. 18 (1972), 407-427. | MR

[11] A. MOSTOWSKI: Recent results in Set theory. in: Problems in the philosophy of mathematics (Lakatos - ed.), North-Holland P. C. 1967, 82-96.

[12] G. H. MÜLLER: An old philosophical question - and the recent гesults in the foundations of mathematics. ibid. p. 133-135.

[13] R. PARIKH: On existence and feasibility in arithmetic. Journ. Symb. Log. 36 (1971), 494-508. | MR

[14] J. R. SHOENFIELD: Mathematical Logic. Addison-Wesley, 1967. | MR | Zbl

[15] A. SOCHOR: On semisets defined by non-normal formulas. (in pгeparation). | Zbl

[16] P. VOPӖNKA: The theory of semisets. in: Proc. Int. Congr. of Math. Nice, Gauthier-Villars 1971, p. 255-260. | MR

[17] P. VOPĚNKA P. HÁJEK: The theory of semisets. Academia Prague and North-Holland P. C. 1972. | MR

[18] P. ŠTĚPÁNEK: Některé podmodely ultrapгoduktu. (thesis),