Hyper-extensions of $\sigma$-algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 2, pp. 361-375 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A21, 28A05, 54C50
@article{CMUC_1973_14_2_a13,
     author = {Frol{\'\i}k, Zden\v{e}k},
     title = {Hyper-extensions of $\sigma$-algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {361--375},
     year = {1973},
     volume = {14},
     number = {2},
     mrnumber = {0346115},
     zbl = {0276.28004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_2_a13/}
}
TY  - JOUR
AU  - Frolík, Zdeněk
TI  - Hyper-extensions of $\sigma$-algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1973
SP  - 361
EP  - 375
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1973_14_2_a13/
LA  - en
ID  - CMUC_1973_14_2_a13
ER  - 
%0 Journal Article
%A Frolík, Zdeněk
%T Hyper-extensions of $\sigma$-algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1973
%P 361-375
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1973_14_2_a13/
%G en
%F CMUC_1973_14_2_a13
Frolík, Zdeněk. Hyper-extensions of $\sigma$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 2, pp. 361-375. http://geodesic.mathdoc.fr/item/CMUC_1973_14_2_a13/

[1] Z. FROLÍK: A measurable map with analytic domain and metrizable range is quotient. Bull. Amer. Math. Soc. 76 (1970), 1112-1117. | MR

[2] Z. FROLÍK: Real-compactness is a Baire measurable property. Bull. Acad. Polon. XIX (1971), 617-621. | MR

[3] Z. FROLÍK: Topological methods in measure theory and the theory of measurable spaces. Proc. Third Prague Topological Symposium 1971, Academia, Prague, 1972, 127-139. | MR

[4] Z. FROLÍK: Prime filters with CIP. Comment. Math. Univ. Carolinae 13 (1972), 553-575. | MR

[5] Z. FROLÍK: Baire sets and uniformities on complete metric spaces. Comment. Math. Univ. Carolinae 13 (1972), 137-147. | MR

[6] Z. FROLÍK: Complete measurable spaces. To appear.

[7] A. HAGER G. REYNOLDS M. RICE: Borel-complete topological spaces. Fund. Math. 75 (1972), 135-143. | MR

[8] R. HANSELL: PhD dissertation, Rochester 1970.

[9] R. HANSELL: On the non-separable theory of Borel and Souslin sets. Bull. Amer. Math. Soc. 78 (1972), 236-241. | MR

[10] A. HAYES: Alexander's theorem for realcompactness. Proc. Cambridge Philos. Soc. 64 (1968), 41-43. | MR

[11] E. HEWITT: Linear functionals on spaces of continuous functions. Fund. Math. 37 (1950), 161-18. | MR | Zbl

[12] W. MORAN: Measures and mappings on topological spaces. Proc. London Math. Soc. (3) 19 (1969), 493-508 | Zbl