@article{CMUC_1973_14_2_a13,
author = {Frol{\'\i}k, Zden\v{e}k},
title = {Hyper-extensions of $\sigma$-algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {361--375},
year = {1973},
volume = {14},
number = {2},
mrnumber = {0346115},
zbl = {0276.28004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_2_a13/}
}
Frolík, Zdeněk. Hyper-extensions of $\sigma$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 2, pp. 361-375. http://geodesic.mathdoc.fr/item/CMUC_1973_14_2_a13/
[1] Z. FROLÍK: A measurable map with analytic domain and metrizable range is quotient. Bull. Amer. Math. Soc. 76 (1970), 1112-1117. | MR
[2] Z. FROLÍK: Real-compactness is a Baire measurable property. Bull. Acad. Polon. XIX (1971), 617-621. | MR
[3] Z. FROLÍK: Topological methods in measure theory and the theory of measurable spaces. Proc. Third Prague Topological Symposium 1971, Academia, Prague, 1972, 127-139. | MR
[4] Z. FROLÍK: Prime filters with CIP. Comment. Math. Univ. Carolinae 13 (1972), 553-575. | MR
[5] Z. FROLÍK: Baire sets and uniformities on complete metric spaces. Comment. Math. Univ. Carolinae 13 (1972), 137-147. | MR
[6] Z. FROLÍK: Complete measurable spaces. To appear.
[7] A. HAGER G. REYNOLDS M. RICE: Borel-complete topological spaces. Fund. Math. 75 (1972), 135-143. | MR
[8] R. HANSELL: PhD dissertation, Rochester 1970.
[9] R. HANSELL: On the non-separable theory of Borel and Souslin sets. Bull. Amer. Math. Soc. 78 (1972), 236-241. | MR
[10] A. HAYES: Alexander's theorem for realcompactness. Proc. Cambridge Philos. Soc. 64 (1968), 41-43. | MR
[11] E. HEWITT: Linear functionals on spaces of continuous functions. Fund. Math. 37 (1950), 161-18. | MR | Zbl
[12] W. MORAN: Measures and mappings on topological spaces. Proc. London Math. Soc. (3) 19 (1969), 493-508 | Zbl