On the range of nonlinear operators with linear asymptotes which are not invertible
Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 63-72 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J30, 35J65, 47H10, 47H15, 47H99, 47J05
@article{CMUC_1973_14_1_a5,
     author = {Ne\v{c}as, Jind\v{r}ich},
     title = {On the range of nonlinear operators with linear asymptotes which are not invertible},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {63--72},
     year = {1973},
     volume = {14},
     number = {1},
     mrnumber = {0318995},
     zbl = {0257.47032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/}
}
TY  - JOUR
AU  - Nečas, Jindřich
TI  - On the range of nonlinear operators with linear asymptotes which are not invertible
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1973
SP  - 63
EP  - 72
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/
LA  - en
ID  - CMUC_1973_14_1_a5
ER  - 
%0 Journal Article
%A Nečas, Jindřich
%T On the range of nonlinear operators with linear asymptotes which are not invertible
%J Commentationes Mathematicae Universitatis Carolinae
%D 1973
%P 63-72
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/
%G en
%F CMUC_1973_14_1_a5
Nečas, Jindřich. On the range of nonlinear operators with linear asymptotes which are not invertible. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/

[1] L. CESARI: Functional analysis and Galerkin's method. Michigan Math. J. 11 (1964), 385-414. | MR | Zbl

[2] S. A. WILLIAMS: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem. J. Diff. Eq. 8 (1970), 580-586. | MR | Zbl

[3] E. LANDESMM A. LAZAR: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), n. 7, 609-623. | MR

[4] J. NEČAS: Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations. Sasopis pěst. mat. 97 (1972), 65-71. | MR

[5] J. NEČAS: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. Comment. Math. Univ. Carolinae 13 (1972), 109-120. | MR

[6] J. NEČAS: Les méthodes directes en théorie des équations elliptiques. Academia Prague, 1967. | MR