@article{CMUC_1973_14_1_a5,
author = {Ne\v{c}as, Jind\v{r}ich},
title = {On the range of nonlinear operators with linear asymptotes which are not invertible},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {63--72},
year = {1973},
volume = {14},
number = {1},
mrnumber = {0318995},
zbl = {0257.47032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/}
}
TY - JOUR AU - Nečas, Jindřich TI - On the range of nonlinear operators with linear asymptotes which are not invertible JO - Commentationes Mathematicae Universitatis Carolinae PY - 1973 SP - 63 EP - 72 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/ LA - en ID - CMUC_1973_14_1_a5 ER -
Nečas, Jindřich. On the range of nonlinear operators with linear asymptotes which are not invertible. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a5/
[1] L. CESARI: Functional analysis and Galerkin's method. Michigan Math. J. 11 (1964), 385-414. | MR | Zbl
[2] S. A. WILLIAMS: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem. J. Diff. Eq. 8 (1970), 580-586. | MR | Zbl
[3] E. LANDESMM A. LAZAR: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), n. 7, 609-623. | MR
[4] J. NEČAS: Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations. Sasopis pěst. mat. 97 (1972), 65-71. | MR
[5] J. NEČAS: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. Comment. Math. Univ. Carolinae 13 (1972), 109-120. | MR
[6] J. NEČAS: Les méthodes directes en théorie des équations elliptiques. Academia Prague, 1967. | MR