Existence theorems for operator equations and nonlinear elliptic boundary-value problems
Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 27-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J60, 35J65, 46B10, 46E35, 47F05, 47H05, 47H15, 47J05
@article{CMUC_1973_14_1_a2,
     author = {Petry, Walter},
     title = {Existence theorems for operator equations and nonlinear elliptic boundary-value problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {27--46},
     year = {1973},
     volume = {14},
     number = {1},
     mrnumber = {0320830},
     zbl = {0255.35040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a2/}
}
TY  - JOUR
AU  - Petry, Walter
TI  - Existence theorems for operator equations and nonlinear elliptic boundary-value problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1973
SP  - 27
EP  - 46
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a2/
LA  - en
ID  - CMUC_1973_14_1_a2
ER  - 
%0 Journal Article
%A Petry, Walter
%T Existence theorems for operator equations and nonlinear elliptic boundary-value problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1973
%P 27-46
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a2/
%G en
%F CMUC_1973_14_1_a2
Petry, Walter. Existence theorems for operator equations and nonlinear elliptic boundary-value problems. Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 27-46. http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a2/

[1] H. BRÉZIS: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier, Grenoble 18 (1968), 115-175. | MR

[2] F. E. BROWDER: Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69 (1963), 862-874. | MR | Zbl

[3] F. E. BROWDER: Existence theorems for nonlinear partial differential equations. "Global Analysis", Proc. Symposia Pure Math., Vol. XVI (held at the University of California, Berkeley, July 1-26, 1968), Amer. Math. Soc., Providence, Rhode Island 1970. | MR

[4] F. E. BROWDER, BUI AN TON: Nonlinear functional equations in Banach spaces and elliptic superregularization. Math. Zeitschr. 105 (1968), 177-195. | MR

[5] BUI AN TON: Pseudo-monotone operators in Banach spaces, and nonlinear elliptic equations. Math. Zeitschr. 111 (1971), 243-252. | MR

[6] M. A. KRASNOSELSKII: Topological methods in the theory of non-linear integral equations. GITTL, Moscow, 1956; English transl., Macmillan, New York 19641. | MR

[7] J. L. LIONS: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969. | MR | Zbl

[8] J. LERAY J. L. LIONS: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965), 97-107. | MR

[9] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non-linéaires avec applications aux problèmes aux limites. Estr. dagli Ann. délia Scuola Norm. Sup. Pisa, Cl. di Scienze 23 (1969), Fasc. II, 331-345. | MR | Zbl

[10] J. NEČAS: Les équations elliptiques non linéaires. Czechoslovak Math. J. 19 (94) (1969), 252-274. | MR

[11] W. PETRY: Existence theorems for a class of nonlinear operator equations. J. Math. Anal. Appl. (in print). | MR | Zbl

[12] W. PETRY: Generalized Hammerstein equation and integral equation of Hammerstein type. | Zbl

[13] M. I. VIŠIK: Boundary value problems for quasilinear strongly elliptic systems of divergent form. Soviet Math. Dokl. 2 (1961), 643-647.

[14] M. I. VIŠIK: Solvability of the first boundary value problem for quasilinear equations with rapidly increasing coefficients in Orlicz spaces. Soviet Math. Dokl.4 (1963), 1060-1064.

[15] M. I. VIŠIK: Quasi-linear strongly elliptic systems of differential equations in divergence form. Trans. Moscow Math. Soc. 12 (1963), 140-208. | MR

[16] P. P. ZABREIKO: The Schaefer method in the theory of Hammerstein Integral Equations. Math. USSR Sbornik 13 (1971), Nr. 3, 451-471.