Double layer potential representation of the solution of the Dirichlet problem (Preliminary communication)
Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 183-186
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1973_14_1_a16,
author = {Netuka, Ivan},
title = {Double layer potential representation of the solution of the {Dirichlet} problem {(Preliminary} communication)},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {183--186},
year = {1973},
volume = {14},
number = {1},
mrnumber = {0316725},
zbl = {0255.31009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a16/}
}
TY - JOUR AU - Netuka, Ivan TI - Double layer potential representation of the solution of the Dirichlet problem (Preliminary communication) JO - Commentationes Mathematicae Universitatis Carolinae PY - 1973 SP - 183 EP - 186 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a16/ LA - en ID - CMUC_1973_14_1_a16 ER -
%0 Journal Article %A Netuka, Ivan %T Double layer potential representation of the solution of the Dirichlet problem (Preliminary communication) %J Commentationes Mathematicae Universitatis Carolinae %D 1973 %P 183-186 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a16/ %G en %F CMUC_1973_14_1_a16
Netuka, Ivan. Double layer potential representation of the solution of the Dirichlet problem (Preliminary communication). Commentationes Mathematicae Universitatis Carolinae, Tome 14 (1973) no. 1, pp. 183-186. http://geodesic.mathdoc.fr/item/CMUC_1973_14_1_a16/
[1] M. DONT: Non-tangential limits of the double layer potentials. Čas. pěst. mat. 97 (1972), 231-258. | MR | Zbl
[2] J. KRÁL: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. | MR
[3] Š. SCHWABIK: On an integral operator in the space of functions with bounded variation. Čas. pěst. mat. 97 (1972), 297-330. | MR | Zbl