A generalization of reflexive Banach spaces and weakly compact operators
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 4, pp. 673-684 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46B10, 47B06
@article{CMUC_1972_13_4_a6,
     author = {Howard, Joe},
     title = {A generalization of reflexive {Banach} spaces and weakly compact operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {673--684},
     year = {1972},
     volume = {13},
     number = {4},
     mrnumber = {0336298},
     zbl = {0245.47024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_4_a6/}
}
TY  - JOUR
AU  - Howard, Joe
TI  - A generalization of reflexive Banach spaces and weakly compact operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 673
EP  - 684
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_4_a6/
LA  - en
ID  - CMUC_1972_13_4_a6
ER  - 
%0 Journal Article
%A Howard, Joe
%T A generalization of reflexive Banach spaces and weakly compact operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 673-684
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_4_a6/
%G en
%F CMUC_1972_13_4_a6
Howard, Joe. A generalization of reflexive Banach spaces and weakly compact operators. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 4, pp. 673-684. http://geodesic.mathdoc.fr/item/CMUC_1972_13_4_a6/

[1] C. BESSAGA, A. PELCZYNSKI: On bases and unconditional convergence of series in Banach spaces. Studia Math. 18 (1958), 151-164. | MR | Zbl

[2] J. HOWARD: The comparison of an unconditionally converging operator. Studia Math. 33 (1969), 295-298. | MR | Zbl

[3] J. HOWARD: F-singular and G-cosingular operators. to appear. | MR

[4] R. C. JAMES: Separable conjugate spaces. Pacific J.Math. 10 (1960), 563-571. | MR | Zbl

[5] E. LACEY, R. J. WHITLEY: Conditions under which all the bounded linear maps are compact. Math. Annalen 158 (1965), 1-5. | MR | Zbl

[6] A. PELCZYNSKI: Banach spaces in which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci. 10 (1962), 641-648. | MR

[7] D. P. ROLEWICZ, S. ROLEWICZ: Equations in Linear Spaces. Warszawa, Polish Scientific Publishers, 1968. | MR | Zbl

[8] H. P. ROSENTHAL: On infective Banach spaces and the spaces $L^{inftz} (\mu )$ for finite measures $\mu $. to appear.