$\ast$-biregular rings
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 3, pp. 431-436
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1972_13_3_a2,
author = {Duckenfield, Christopher J.},
title = {$\ast$-biregular rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {431--436},
year = {1972},
volume = {13},
number = {3},
mrnumber = {0313303},
zbl = {0242.16009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_3_a2/}
}
Duckenfield, Christopher J. $\ast$-biregular rings. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 3, pp. 431-436. http://geodesic.mathdoc.fr/item/CMUC_1972_13_3_a2/
[1] J. von NEUMANN: On regular rings. Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713. | Zbl
[2] J. von NEUMANN: Continuous Geometry. Princeton, 1960. | MR | Zbl
[3] L. SKORNYAKOV: Complemented Modular Lattices and Regular Rings. Oliver andm Boyd, 1964. | MR | Zbl
[4] D. MORRISON: Biregular rings and the ideal lattice isomorphisms. Proc. Amer. Math. Soc. 6 (1955), 46-49. | MR
[5] I. KAPLANSKY: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61 (1955), 524-541. | MR | Zbl
[6] V. ANDRUNAKIEVICH: Biregular rings. Matem. Sb. 39 (1956), 447-464. | MR | Zbl
[7] G. BIRKHOFF: Lattice Theory. Amer. Math. Soc., Coll. Series 1948, 25. | MR | Zbl