$\ast$-biregular rings
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 3, pp. 431-436 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 16A30, 16E50, 51E20
@article{CMUC_1972_13_3_a2,
     author = {Duckenfield, Christopher J.},
     title = {$\ast$-biregular rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {431--436},
     year = {1972},
     volume = {13},
     number = {3},
     mrnumber = {0313303},
     zbl = {0242.16009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_3_a2/}
}
TY  - JOUR
AU  - Duckenfield, Christopher J.
TI  - $\ast$-biregular rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 431
EP  - 436
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_3_a2/
LA  - en
ID  - CMUC_1972_13_3_a2
ER  - 
%0 Journal Article
%A Duckenfield, Christopher J.
%T $\ast$-biregular rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 431-436
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_3_a2/
%G en
%F CMUC_1972_13_3_a2
Duckenfield, Christopher J. $\ast$-biregular rings. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 3, pp. 431-436. http://geodesic.mathdoc.fr/item/CMUC_1972_13_3_a2/

[1] J. von NEUMANN: On regular rings. Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713. | Zbl

[2] J. von NEUMANN: Continuous Geometry. Princeton, 1960. | MR | Zbl

[3] L. SKORNYAKOV: Complemented Modular Lattices and Regular Rings. Oliver andm Boyd, 1964. | MR | Zbl

[4] D. MORRISON: Biregular rings and the ideal lattice isomorphisms. Proc. Amer. Math. Soc. 6 (1955), 46-49. | MR

[5] I. KAPLANSKY: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61 (1955), 524-541. | MR | Zbl

[6] V. ANDRUNAKIEVICH: Biregular rings. Matem. Sb. 39 (1956), 447-464. | MR | Zbl

[7] G. BIRKHOFF: Lattice Theory. Amer. Math. Soc., Coll. Series 1948, 25. | MR | Zbl