On dense subspaces of certain topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 2, pp. 203-210 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54B05, 54E20
@article{CMUC_1972_13_2_a0,
     author = {Reed, George Michael},
     title = {On dense subspaces of certain topological spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {203--210},
     year = {1972},
     volume = {13},
     number = {2},
     mrnumber = {0305362},
     zbl = {0238.54025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_2_a0/}
}
TY  - JOUR
AU  - Reed, George Michael
TI  - On dense subspaces of certain topological spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 203
EP  - 210
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_2_a0/
LA  - en
ID  - CMUC_1972_13_2_a0
ER  - 
%0 Journal Article
%A Reed, George Michael
%T On dense subspaces of certain topological spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 203-210
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_2_a0/
%G en
%F CMUC_1972_13_2_a0
Reed, George Michael. On dense subspaces of certain topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 2, pp. 203-210. http://geodesic.mathdoc.fr/item/CMUC_1972_13_2_a0/

[1] E. S. BERNEY: A regular Lindelöf semi-metric space which has no countable network. Proc. Amer. Math. Soc. 26 (1970), 361-364. | MR

[2] C. J. R. BORGES: On stratifiable spaces. Pacific J. Math. 17 (1966), 1-16. | MR | Zbl

[3] J. G. CEDER: Some generalizations of metric spaces. Pacific J. Math. 11 (1961), 105-125. | MR | Zbl

[4] G. C. CREEDE: Concerning semi-stratifiable spaces. Pacific J. Math. 32 (1970), 47-54. | MR | Zbl

[5] R. W. HEATH: A paracompact semi-metric space which is not an $M_3$ -space. Proc. Amer. Math. Soc. 17 (1966), 868-870. | MR

[6] R. W. HEATH: Stratifiable spaces are $\sigma $ -spaces. to appear.

[7] R. W. HEATH: On a non-stratifiable countable space. Proc. of the Emory Univ. Topology Conf. (1970), 119-122. | MR | Zbl

[8] A. OKUYAMA: $\sigma $ -spaces and closed mappings, I. Proc. Japan Acad. 44 (1968), 472-477. | MR | Zbl

[9] G. M. REED: Concerning first countable spaces. Fund. Math., to appear. | MR | Zbl