Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 109-120 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35D05, 47B15, 47H15, 47H30, 47J05, 49G99, 58E05
@article{CMUC_1972_13_1_a8,
     author = {Ne\v{c}as, Jind\v{r}ich},
     title = {Remark on the {Fredholm} alternative for nonlinear operators with application to nonlinear integral equations of generalized {Hammerstein} type},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {109--120},
     year = {1972},
     volume = {13},
     number = {1},
     mrnumber = {0305171},
     zbl = {0235.47039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a8/}
}
TY  - JOUR
AU  - Nečas, Jindřich
TI  - Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 109
EP  - 120
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a8/
LA  - en
ID  - CMUC_1972_13_1_a8
ER  - 
%0 Journal Article
%A Nečas, Jindřich
%T Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 109-120
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a8/
%G en
%F CMUC_1972_13_1_a8
Nečas, Jindřich. Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a8/

[1] F. E. BROWDER: Existence and uniqueness theorems for solutions of non-linear boundary value problems. Proc. Symposia on Appl. Math. Amer. Math. Soc. 17 (1965), 24-49. | MR

[2] F. E. BROWDER: Existence theorems for non-linear partial differential equations. Proc. Amer. Math. Soc. 1968. Summer Institute in Global Analysis (to appear).

[3] F. E. BROWDER: Non-linear operators and non-linear equations of evolution in Banach spaces. Proceedings of the Symposium on Non-linear Functional Analysis, Amer. Math. Soc. April, 1968 in Chicago. To appear.

[4] D. G. de FIGUEIREDO, Ch. P. GUPTA: Borsuk type theorems for non-linear non-compact mappings in Banach Space. to appear.

[5] S. FUČÍK: Note on the Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae 12 (1971), 213-226. | MR

[6] M. A. KRASNOSELSKIJ: Topological methods in the theory of non-linear integral equations. Pergamon Press, N. T. 1964.

[7] M. KUČERA: Fredholm alternative for non-linear operators. thesis 1969, Charles University, Prague.

[8] M. KUČERA: Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae 11 (1970), 337-363. | MR

[9] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites. Annali Scuola Norm. Sup. Pisa, XXIII (1969), 331-345. | MR | Zbl

[10] S. I. POCHOŽAJEV: On the solvability of non-linear equations involving odd operators. Functional Analysis and Appl. (Russian), 1 (1967), 66-73.

[11] M. M. VAJNBERG: Variational methods for the study of non-linear operators. Holden-Day, 1964.