A characterization of the eigenvalues of a completely continuous selfadjoint operator
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 63-78 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47A05, 47A75, 47A99, 47B05, 49G05, 58E05
@article{CMUC_1972_13_1_a5,
     author = {Naumann, Joachim},
     title = {A characterization of the eigenvalues of a completely continuous selfadjoint operator},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {63--78},
     year = {1972},
     volume = {13},
     number = {1},
     mrnumber = {0305207},
     zbl = {0232.47027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/}
}
TY  - JOUR
AU  - Naumann, Joachim
TI  - A characterization of the eigenvalues of a completely continuous selfadjoint operator
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 63
EP  - 78
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/
LA  - en
ID  - CMUC_1972_13_1_a5
ER  - 
%0 Journal Article
%A Naumann, Joachim
%T A characterization of the eigenvalues of a completely continuous selfadjoint operator
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 63-78
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/
%G en
%F CMUC_1972_13_1_a5
Naumann, Joachim. A characterization of the eigenvalues of a completely continuous selfadjoint operator. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/

[1] ACHIESER N. I., GLASMANN I. M.: Theorie der linearen Operatoren in Hilbert-Raum. Akademie - Verlag Berlin, 1968.

[2] BERGER M. S.: On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate. Comm. Pure Appl. Math. 20 (1967), 687-719. | MR | Zbl

[3] BROWDER F. E.: Variational methods for nonlinear elliptic eigenvalue problems. Bull. Amer. Math. Soc. 71 (1965), 176-183. | MR | Zbl

[4] KRASNOSELSKIJ M. A.: Topological methods in the theory of nonlinear integral equations. (in Russian), Moscow, GITTL, 1956.

[5] LAX P. D.: A procedure for obtaining upper bounds for the eigenvalues of a Hermitian symmetric operator. Studies in Math. Analysis, Polya Issue, Stanford Univ. Press. Stanford 1962, 199-201. | MR | Zbl

[6] LJUSTERNIK L. A., SOBOLEV W. I.: Elemente deг Funktionalanalysis. Akademie - Verlag Berlin, 1968.

[7] NAUMANN J.: Existenzsätze für nichtlineare Eigenwertprobleme. (to appear). | MR | Zbl

[8] STENGER W.: On the variational principles for eigenvalues for a class of unbounded operators. J. Math. Mech. 17 (1968), 641-648. | MR | Zbl

[9] VAJNBERG M. M.: Variational methods for the investigation of nonlinear operators. (in Russian), Moscow, GITTL, 1956.