@article{CMUC_1972_13_1_a5,
author = {Naumann, Joachim},
title = {A characterization of the eigenvalues of a completely continuous selfadjoint operator},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {63--78},
year = {1972},
volume = {13},
number = {1},
mrnumber = {0305207},
zbl = {0232.47027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/}
}
TY - JOUR AU - Naumann, Joachim TI - A characterization of the eigenvalues of a completely continuous selfadjoint operator JO - Commentationes Mathematicae Universitatis Carolinae PY - 1972 SP - 63 EP - 78 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/ LA - en ID - CMUC_1972_13_1_a5 ER -
Naumann, Joachim. A characterization of the eigenvalues of a completely continuous selfadjoint operator. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a5/
[1] ACHIESER N. I., GLASMANN I. M.: Theorie der linearen Operatoren in Hilbert-Raum. Akademie - Verlag Berlin, 1968.
[2] BERGER M. S.: On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate. Comm. Pure Appl. Math. 20 (1967), 687-719. | MR | Zbl
[3] BROWDER F. E.: Variational methods for nonlinear elliptic eigenvalue problems. Bull. Amer. Math. Soc. 71 (1965), 176-183. | MR | Zbl
[4] KRASNOSELSKIJ M. A.: Topological methods in the theory of nonlinear integral equations. (in Russian), Moscow, GITTL, 1956.
[5] LAX P. D.: A procedure for obtaining upper bounds for the eigenvalues of a Hermitian symmetric operator. Studies in Math. Analysis, Polya Issue, Stanford Univ. Press. Stanford 1962, 199-201. | MR | Zbl
[6] LJUSTERNIK L. A., SOBOLEV W. I.: Elemente deг Funktionalanalysis. Akademie - Verlag Berlin, 1968.
[7] NAUMANN J.: Existenzsätze für nichtlineare Eigenwertprobleme. (to appear). | MR | Zbl
[8] STENGER W.: On the variational principles for eigenvalues for a class of unbounded operators. J. Math. Mech. 17 (1968), 641-648. | MR | Zbl
[9] VAJNBERG M. M.: Variational methods for the investigation of nonlinear operators. (in Russian), Moscow, GITTL, 1956.