Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication)
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 185-189
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1972_13_1_a15,
author = {Doktor, Alexander},
title = {Mixed problem for semilinear hyperbolic equation of second order with the {Dirichlet} boundary condition {(Preliminary} communication)},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {185--189},
year = {1972},
volume = {13},
number = {1},
mrnumber = {0310441},
zbl = {0229.35055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/}
}
TY - JOUR AU - Doktor, Alexander TI - Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication) JO - Commentationes Mathematicae Universitatis Carolinae PY - 1972 SP - 185 EP - 189 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/ LA - en ID - CMUC_1972_13_1_a15 ER -
%0 Journal Article %A Doktor, Alexander %T Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication) %J Commentationes Mathematicae Universitatis Carolinae %D 1972 %P 185-189 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/ %G en %F CMUC_1972_13_1_a15
Doktor, Alexander. Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication). Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 185-189. http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/
[1] J. SATHER: The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics. J. Math. Mech. 16 (1966), 27-50. | MR | Zbl
[2] J. SATHER: The existence of a global classical solution of the initial boundary value problem for $ cmu+u\sp{3}=f$. Arch. Rat. Mech. Anal. 22 (1966), 292-307. | MR
[3] A. DOKTOR: Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition. To appear in Czech. Math. J. | MR | Zbl