Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication)
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 185-189 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35L20, 35L70, 35M10
@article{CMUC_1972_13_1_a15,
     author = {Doktor, Alexander},
     title = {Mixed problem for semilinear hyperbolic equation of second order with the {Dirichlet} boundary condition {(Preliminary} communication)},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {185--189},
     year = {1972},
     volume = {13},
     number = {1},
     mrnumber = {0310441},
     zbl = {0229.35055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/}
}
TY  - JOUR
AU  - Doktor, Alexander
TI  - Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication)
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 185
EP  - 189
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/
LA  - en
ID  - CMUC_1972_13_1_a15
ER  - 
%0 Journal Article
%A Doktor, Alexander
%T Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication)
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 185-189
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/
%G en
%F CMUC_1972_13_1_a15
Doktor, Alexander. Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition (Preliminary communication). Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 185-189. http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a15/

[1] J. SATHER: The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics. J. Math. Mech. 16 (1966), 27-50. | MR | Zbl

[2] J. SATHER: The existence of a global classical solution of the initial boundary value problem for $ cmu+u\sp{3}=f$. Arch. Rat. Mech. Anal. 22 (1966), 292-307. | MR

[3] A. DOKTOR: Mixed problem for semilinear hyperbolic equation of second order with the Dirichlet boundary condition. To appear in Czech. Math. J. | MR | Zbl