Baire sets and uniformities on complete metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 137-147 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A05, 54E15, 54E50, 54H05
@article{CMUC_1972_13_1_a10,
     author = {Frol{\'\i}k, Zden\v{e}k},
     title = {Baire sets and uniformities on complete metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {137--147},
     year = {1972},
     volume = {13},
     number = {1},
     mrnumber = {0325903},
     zbl = {0246.54038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a10/}
}
TY  - JOUR
AU  - Frolík, Zdeněk
TI  - Baire sets and uniformities on complete metric spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1972
SP  - 137
EP  - 147
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a10/
LA  - en
ID  - CMUC_1972_13_1_a10
ER  - 
%0 Journal Article
%A Frolík, Zdeněk
%T Baire sets and uniformities on complete metric spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1972
%P 137-147
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a10/
%G en
%F CMUC_1972_13_1_a10
Frolík, Zdeněk. Baire sets and uniformities on complete metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 13 (1972) no. 1, pp. 137-147. http://geodesic.mathdoc.fr/item/CMUC_1972_13_1_a10/

[F 1] FROLÍK Z.: Absolute Borel and Souslin sets. Pacific J. Math. 32 (1970), 663-683. | MR

[F 2] FROLÍK Z.: Topological methods in measure theory and the theory of measurable spaces. Proc. 3rd Prague Symposium on general topology. Academia, Prague 1972. | MR

[F 3] FROLÍK Z.: Uniform methods in the theory of measurable spaces. to appear.

[F 4] FROLÍK Z.: Correspondence technique in non-separable descriptive theory. to appear.

[H 1] HANSELL R. W.: PhD dissertation, Rochester, 1970.

[H 2] HANSELL R. W.: On hyper-Borel sets. to appear in Bull. Amer. Math. Soc. | MR

[H 3] HANSELL R. W.: On the non-separable theory of k-Borel and H-Souslin sets. I. To appear in General Topology and Appl. 1972. | MR

[1] K. KURATOWSKI: Topologie I. Warszawa 1952.

[2] D. MONTGOMERY: Non-separable metric spaces. Fund. Math. 25 (1935), 527-534. | Zbl

[S 1] A. H. STONE: Non-separable Borel sets. Rozprawy Mat. 28, Warszawa 1962. | MR | Zbl

[S 2] A. H. STONE: Non-separable Borel sets II. To appear in General Topology and Appl. | MR | Zbl