The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 723-736
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1971_12_4_a6,
author = {Sou\v{c}ek, Vladim{\'\i}r},
title = {The nonexistence of a weak solution of {Dirichlet's} problem for the functional of minimal surface on nonconvex domains},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {723--736},
year = {1971},
volume = {12},
number = {4},
mrnumber = {0296786},
zbl = {0256.35030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/}
}
TY - JOUR AU - Souček, Vladimír TI - The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains JO - Commentationes Mathematicae Universitatis Carolinae PY - 1971 SP - 723 EP - 736 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/ LA - en ID - CMUC_1971_12_4_a6 ER -
%0 Journal Article %A Souček, Vladimír %T The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains %J Commentationes Mathematicae Universitatis Carolinae %D 1971 %P 723-736 %V 12 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/ %G en %F CMUC_1971_12_4_a6
Souček, Vladimír. The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 723-736. http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/
[1] R. FINN: Remark relevant to minimal surfaces and to surface of prescribed mean curvature. Journal d'Analyse Mathematique 14 (1965), 139-160. | MR
[2] J. SOUČEK: The spaces of the functions on domain $\Omega $, whose k-th derivatives are measure, defined on $\overline \Omega $. - to appear in Czech. Math. Journ. | MR
[3] J KAČÚR J. NEČAS J. SOUČEK: The ultraweak solutions of variational problems over spaces $W_1^(k) $ of the types of nonparametric minimal surface. - to appear.
[4] J. C. C. NITSCHE: On new results in the theory of minimal surfaces. Bull. Amer. math. Soc. 71 (1965), 195-270. | MR | Zbl
[5] H. JENKINS J. SERRIN: Variational problems of minimal surface type II. Arch. Rat. Mech. Anal. 21 (1966), 321-342. | MR