The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains
Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 723-736 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35D05, 35J25, 35J60, 35J67, 49F10, 49Q05, 53A10
@article{CMUC_1971_12_4_a6,
     author = {Sou\v{c}ek, Vladim{\'\i}r},
     title = {The nonexistence of a weak solution of {Dirichlet's} problem for the functional of minimal surface on nonconvex domains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {723--736},
     year = {1971},
     volume = {12},
     number = {4},
     mrnumber = {0296786},
     zbl = {0256.35030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/}
}
TY  - JOUR
AU  - Souček, Vladimír
TI  - The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1971
SP  - 723
EP  - 736
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/
LA  - en
ID  - CMUC_1971_12_4_a6
ER  - 
%0 Journal Article
%A Souček, Vladimír
%T The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains
%J Commentationes Mathematicae Universitatis Carolinae
%D 1971
%P 723-736
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/
%G en
%F CMUC_1971_12_4_a6
Souček, Vladimír. The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains. Commentationes Mathematicae Universitatis Carolinae, Tome 12 (1971) no. 4, pp. 723-736. http://geodesic.mathdoc.fr/item/CMUC_1971_12_4_a6/

[1] R. FINN: Remark relevant to minimal surfaces and to surface of prescribed mean curvature. Journal d'Analyse Mathematique 14 (1965), 139-160. | MR

[2] J. SOUČEK: The spaces of the functions on domain $\Omega $, whose k-th derivatives are measure, defined on $\overline \Omega $. - to appear in Czech. Math. Journ. | MR

[3] J KAČÚR J. NEČAS J. SOUČEK: The ultraweak solutions of variational problems over spaces $W_1^(k) $ of the types of nonparametric minimal surface. - to appear.

[4] J. C. C. NITSCHE: On new results in the theory of minimal surfaces. Bull. Amer. math. Soc. 71 (1965), 195-270. | MR | Zbl

[5] H. JENKINS J. SERRIN: Variational problems of minimal surface type II. Arch. Rat. Mech. Anal. 21 (1966), 321-342. | MR